PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of Aluminum Matrix Composite Reinforced with Al0.5CoCrCuFeNi High-Entropy Alloy Particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aluminum composite with dispersed high entropy alloy were developed by stir casting involving the powder-in-tube method. First, Al0.5CoCrCuFeNi high entropy alloy (HEA) powder was made by mechanical alloying, and the powder was extruded in a tube-type aluminum container to form HEA precursor. The extruded HEA precursor was then dispersed in the aluminum matrix via stir casting. As a result, Fe-Cr-Ni based high-entropy phases was uniformly formed in the aluminum matrix, revealing ~158, 166, 235% enhancement of tensile strength by incorporating 1, 3, and 5 wt% HEA particles, respectively.
Twórcy
autor
  • Hanyang University, Department of Materials Science & Engineering, Seoul, Republic of Korea
  • Korea Automotive Technology Institute, Metallic Material R&D Center, Cheonan-si, Republic of Korea
autor
  • Kookmin University, School of Materials Science and Engineering, Seoul, Republic of Korea
  • Korea Automotive Technology Institute, Metallic Material R&D Center, Cheonan-si, Republic of Korea
autor
  • Hanyang University, Department of Materials Science & Engineering, Seoul, Republic of Korea
  • Kookmin University, School of Materials Science and Engineering, Seoul, Republic of Korea
autor
  • Korea Automotive Technology Institute, Metallic Material R&D Center, Cheonan-si, Republic of Korea
Bibliografia
  • [1] E.A. Starke Jr, J.T. Staley 32, 131 (1996).
  • [2] M.S. Kim, D.Y. Kim, Y.D. Kim, H.J. Choi, S.H. Kim, Arch. Metall. Mater. 66, 3 (2021).
  • [3] H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch, S.R. Nutt, Mater. Sci. Eng. A 297, 94 (2001).
  • [4] E.A. Starke, J.T. Staley, Prog. Aerosp. Sci. 32, 131 (1996).
  • [5] F. Czerwinski, W. Kasprzak, D. Sediako, D. Emadi, S. Shaha, J. Friedman, D. Chen, Adv. Mater. Process 174, 16 (2016).
  • [6] S.M. Shin, D.H. Lee, Y.H. Lee, S.M. Ko, H.J. Park, S.B. Lee, S.C. Cho, Y.D. Kim, S.K. Lee, I.J. Jo, Metals 9, 1108 (2019).
  • [7] L.Y. Chen, J.Q. Xu, H.S. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, X.C. Li, Nature 528, 539 (2015).
  • [8] J. Singh, A. Chauhan, J. Mater. Res. Technol. 5, 2 (2016).
  • [9] W. Chen, Z. Fu, S. Fang, H. Xiao, D. Zhu, Mater. Des. 51 (2013).
  • [10] C.Y. Hsu, T.S. Sheu, J.W. Yeh, S.K. Chen, Wear 268, 5 (2010).
  • [11] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96, 1 (2015).
  • [12] J.W. Yeh, Science Des Materiaux, 31 (2006.)
  • [13] C. Jian, P. Niu, T. Wei, H. Liang, Y. Liu, X. Wang, Y. Peng, J. Alloys Compd. 649 (2015).
  • [14] K.P. Kumar, M.G. Krishna, J.B. Rao, N.R.M.R. Bhargava, J. Alloys Compd. 640 (2015).
  • [15] G. Meng, X. Lin, H. Xie, C. Wang, S. Wang, X. Ding, J. Alloys Compd. 672, 660 (2016).
  • [16] Z. Tan, L. Wang, Y. Xue, P. Zhang, T. Cao, X. Cheng, Mater. Des. 109 (2016).
  • [17] Y. Liu, J. Chen, Z. Li, X. Wang, X. Fan, J. Liu, J. Alloys Compd. 780 (2019).
  • [18] Z. Yuan, W. Tian, F. Li, Q. Fu, Y. Hu, X. Wang, J. Alloys Compd. 806 (2019).
  • [19] Z. Yuan, W. Tian, F. Li, Q. Fu, X. Wang, W. Qian, W. An, J. Alloys Compd. 822 (2020)
Uwagi
1. This work has supported by the Industrial Strategic Technology Development Program (No. 20010392) funded by the Ministry of Trade, Industry & Energy (MI, Korea)
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c164014f-c60f-4c18-b4cb-871f106a6675
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.