PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of municipal wastewater treatment with membrane bioreactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Efektywność oczyszczania ścieków komunalnych na przykładzie bioreaktora membranowego
Języki publikacji
EN
Abstrakty
EN
The increasingly stringent requirements for wastewater treatment enforce the adoption of technologies that reduce pollution and minimize waste production. By combining the typical activated sludge process with membrane filtration, biological membrane reactors (MBR) offer great technological potential in this respect. The paper presents the principles and effectiveness of using an MBR at the Głogów Małopolski operation. Physicochemical tests of raw and treated wastewater as well as microscopic analyses with the use of the FISH (fluorescence in situ hybridization) method were carried out. Moreover, the level of electric energy consumption during the operation of the wastewater treatment plant and problems related to fouling were also discussed. A wastewater quality analysis confirmed the high efficiency of removing organic impurities (on average 96% in case of BOD5 and 94% in case of COD) and suspension (on average 93%).
PL
Wraz ze wzrostem wymagań stawianym ściekom oczyszczonym wdrażane są technologie umożliwiające dużą redukcję zanieczyszczeń i jednocześnie małą produkcję odpadów. Biologiczne reaktory membranowe (MBR) dzięki połączeniu klasycznego procesu osadu czynnego z membranową filtracją ścieków stwarzają duże możliwości technologiczne. W pracy przedstawiono zasadę działania oczyszczalni pracującej w Głogowie Małopolskim oraz efektywność jej działania. Wykonano analizę fizykochemiczną ścieków surowych i oczyszczonych oraz analizę mikroskopową z wykorzystaniem metody FISH (fluorescence in situ hybridization), a także przedstawiono poziom zużycia energii elektrycznej podczas pracy oczyszczalni oraz omówiono problemy związane z zarastaniem membran. Analiza jakości ścieków potwierdziła wysoką skuteczność usuwania zanieczyszczeń organicznych (średnio 96% w przypadku BZT5 i 94% w przypadku ChZT) oraz zawiesiny (średnio 93%).
Wydawca
Rocznik
Tom
Strony
47--54
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab.
Twórcy
  • Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-323 Wrocław, Poland
autor
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
autor
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • EkoGłog Sp. z o.o.
Bibliografia
  • AMANN R.I., LUDWIG W, SCHLEIFER K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews. Vol. 59(1) p. 143–69.
  • BARILLON B., RUEL S.M., LANGLAIS C., LAZAROVA V. 2013. Energy efficiency in membrane bioreactors. Water Science Technology. Vol. 67 p. 2685–2691.
  • BODZEK M. 2012. Separacja membranowa w inżynierii środowiska. Podstawy procesów. Cz. V [Membrane separation in environmental engineering: Background of the processes. P. V]. Technologia Wody. Nr 5 p. 24–28.
  • CHMIELOWSKI K., BUGAJSKI P., KACZOR G.B. 2016. Comparative analysis of the quality of sewage discharged from selected agglomeration sewerage systems. Journal of Water and Land Development. No. 30 p. 35–42. DOI 10.1515/jwld-2016-0019.
  • GABARRON S., FERRERO G., DALMAU M., COMAS J., RODRIGUEZRODA I. 2014. Assessment of energy-saving strategies and operational costs in full-scale membrane bioreactors. Journal of Environmental Management. Vol. 134 p. 8–14.
  • GALAS E., PIEKARSKA K. 2013. Biologiczne usuwanie fosforu ze ścieków. W: Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska [Phosphorus removal from wastewater. In: Interdisciplinary problems in environmental protection and engineering]. T. 3. Ed. T.M. Traczewska. Wrocław. Ofic. Wydaw. PWroc. p. 163–169.
  • GRANT S.B., SAPHORES J.D., FELDMAN D.L., HAMILTON A.J., FLETCHER T.D., COOK P.L., STEWARDSON M., SANDERS B.F., LEVIN L.A., AMBROSE R.F., DELETIC A., BROWN R., JIANG S.C., ROSSO D., COOPER W.J., MARUSIC I. 2012. Taking the “waste” out of out of “wastewater” for human water security and ecosystem sustainability. Science. Vol. 337 p. 681–686.
  • HERMANOWICZ S.W. 2011. Membrane bioreactors: Past, present and future? [online]. UC Berkeley: Water Resources Collections and Archives. [Access 01.03.2018]. Available at: https://escholarship.org/uc/item/9293s8zw
  • ITOKAWA H., TSUJI K., YAMASHITA K., HASHIMOTO T. 2014. Design and operating experiences of full-scale municipal membrane bioreactors in Japan. Water Science and Technology. Vol. 69 p. 1088–1093.
  • JUDD S., JUDD C. (eds.) 2011. The MBR book. Principles and applications of membrane bioreactors for water and wastwater treatment. 2nd ed. Elsevier. ISBN 9780080966823 pp. 536.
  • KONIECZNY K. 2015. Efektywność oczyszczania ścieków przy zastosowaniu reaktora membranowego [Effectiveness of wastewater treatment with the use of the biological membrane reactors]. Rocznik Ochrona Środowiska. Vol. 17 p. 1034–1052.
  • KRZEMIŃSKI P., LEVERETTE L., MALAMIS S., KATSOU E. 2017. Membrane bioreactors – A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science. Vol. 527 p. 207–227.
  • KRZEMIŃSKI P., VAN DER GRAAF J.H.J.M., VAN LIER J.B. 2012. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology. Vol. 65 p. 380–394.
  • LE CLECH P., CHEN V., FANE T.A.G. 2006. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science. Vol. 284 p. 17–53.
  • MELIN T., JEFFERSON B., BIXIO D., THOEYE DE WILDE W., DE KONING J., VAN DER GRAAF J., WINNTGENS T. 2006. Membrane bioreactor technology for wastewater treatment and reuse. Desalination. Vol. 187 p. 271–282.
  • MIZUTA K., SHIMADA M. 2010. Benchmarking energy consumption in municipal wastewater treatment plants in Japan. Water Science and Technology. Vol. 62(10) p. 2256–2262.
  • NG A. N.L., KIM A.S. 2007. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination. Vol. 212 p. 261–281.
  • PALMOWSKI L., VELTMANN K., PINNEKAMP J. 2010. Energy optimization of large-scale membrane bioreactors – Importance of the design flux. In: Water energy interaction of water reuse. Eds. V. Lazarova, K. Choo, P. Cornel. London. IWA Publ. p. 139–148.
  • PIASKOWSKI K. 2015. Oczyszczanie ścieków komunalnych w bioreaktorach membranowych na przykładzie oczyszczalni ścieków w Rowach [Example of municipal wastewater treatment in membrane bioreactor in Rowy]. Gaz, Woda i Technika Sanitarna. Nr 3 p. 113–118.
  • PN-EN 872:2002. Jakość wody – Oznaczanie zawiesin – Metoda z zastosowaniem filtracji przez sączki z włókna szklanego [Water quality – Determination of suspended solids by filtration through glass-fibre filters].
  • PN-EN 1189-2000. Jakość wody – Oznaczanie fosforu – Metoda spektrofotometryczna z molibdenianem amonu [Water quality – Determination of phosphorus – Spectrophotometric method with ammonium molybdate].
  • PN-EN 1899-1:2002. Jakość wody – Oznaczanie biochemicznego zapotrzebowania tlenu po n dniach (BZTn) – Część 1. Metoda rozcieńczania i szczepienia z dodatkiem allilotiomocznika [Water quality – Determination of biochemical oxygen demand after N days (BODn) – Part 1. Method for undiluted samples].
  • PN-EN ISO 7027:2003. Jakość wody – Oznaczanie mętności [Water quality – Determination of turbidity].
  • PN-ISO 6060:2006. Jakość wody – Oznaczanie chemicznego zapotrzebowania tlenu [Water quality – Determination of the chemical oxygen demand].
  • RIEGER L., TAKÁCS I., SIEGRIST H. 2012. Improving nutrient removal while reducing energy use at three Swiss WWTPs Using Advanced Control. Water Environment Research. Vol. 84(2) p. 170–188.
  • Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego [Order of the Minister of Environment of 18. November 2014 on conditions to be met when introducing of sewage into the water or ground and on substances particularly harmful to the aquatic environment]. Dz. U. z 2014 poz. 1800.
  • SAGHAFI S., MEHRDADI N., HENDY G. N.B., RAD H.A. 2015. Energy efficiency in wastewater treatment plant emphasizing on COD removal: A case study of Amol Industrial Zone, Iran. Canadian Journal of Pure and Applied Sciences. Vol. 9(2) p. 3441–3448.
  • SHENG C. 2011. Application of submerged hollow fiber membrane in membrane bioreactors: Filtration principles, operation, and membrane fouling. Desalination. Vol. 283 p. 31–39.
  • SINGH P., CARLIELL-MARQUET C., KANSAL A. 2012. Energy pattern analysis of a wastewater treatment plant. Applied Water Science. Vol. 2 p. 221–226.
  • Thermo Fisher Scientific undated. LIVE/DEAD cell viability assays [online]. [Access 01.03.2018]. Available at: https://www.thermofisher.com/us/en/home/brands/molecularprobes/key-molecular-probes-products/live-dead-viabilitybrand-page.html
  • ULMAN E., PITRUS K., ANIELAK A.M. 2013. Zastosowanie i problemy eksploatacyjne nanofiltracji i ultrafiltracji [Application and operating problems of nanofiltration and ultrafiltration]. Technologia Wody. Nr 7–8 p. 27–28.
  • WITKOWSKA E. 2009a. Biologiczne reaktory membranowe (MBR) – nowa technologia oczyszczania ścieków z wykorzystaniem osadu czynnego [Biological membrane reactors (MBR) – a new technology of wastewater treatment using activated sludge]. Forum Eksploatatora. Nr 3 p. 28–30.
  • WITKOWSKA E. 2009b. Usuwanie azotu w biologicznych reaktorach membranowych (MBR) – doświadczenia zagraniczne i badania własne [Nitrogen removal in biological membrane reactors (MBR) – foreign experiences and own research]. Gaz, Woda i Technika Sanitarna. Nr 7–8 p. 37–40.
  • XIAO K., XU Y., LIANG S., LEI T., SUN J., WEN X., ZHANG H., CHEN C., HUANG X. 2014. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect. Frontiers of Environmental Science and Engineering. Vol. 8 p. 805–819.
  • ŻUBROWSKA-SUDOŁ M., CYGANECKA A. 2008. Proces defosfatacji denitryfikacyjnej, jako alternatywna metoda usuwania ze ścieków związków biogennych [Denitrifying dephosphatation as an alternative solution for nutrient removal from wastewater]. Biotechnologia. Vol. 1. Nr 80 p. 136–145.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c16165e2-b74b-4612-93cb-8b006099a124
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.