PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Mesh Quality on the Numerical Solution of the Solidification of Pure Metal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of mathematical and numerical modelling of directional solidification process of pure metal in the two-dimensional region. In this case, the thermal conditions associated with the process favours the occurrence of sharp solidification front. The mathematical description of the process is based on the Stefan formulation with appropriate continuity conditions on the solid-liquid interface. The numerical model is based on the finite element method (FEM). The calculations were made on a fixed mesh with diffused solidification front to avoid the difficulties associated with the discontinuity. Temporary position of the interface was calculated with the use of the level set method (LSM). Effect of the quality of the spatial discretization on the accuracy of numerical solution was investigated. Obtained results of the temporary front position were compared with the analytical solution. The correlation between the quality of the spatial discretization and the accuracy of the results was observed. Methods used in the work had significant impact on the computation time and helped avoid the explicit consideration of discontinuity of heat flux on the front.
Rocznik
Strony
89--92
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Institute of Mechanics and Machine Design, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa, Poland
  • Institute of Mathematics, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Armii Krajowej 21, 42-200 Częstochowa, Poland
Bibliografia
  • [1] Kapturkiewicz, W., Burbelko, A. A. & Fraś, E. (2008). Mathematical and numerical model of directional solidification including initial and terminal transients of the process. Archives of Foundry Engineering. 8(4), 65-70.
  • [2] Skrzypczak, T. & Węgrzyn-Skrzypczak, E. (2008). Numerical modelling of the binary alloys solidification with solutal undercooling. Archives of Foundry Engineering. 8(1), 299-302.
  • [3] Sowa, L. (2010). Numerical analysis of the thermal and fluid flow phenomena of the fluidity test. Archives of Foundry Engineering. 10(1), 157-160.
  • [4] Sowa, L. (2011). Effect of nozzle outlet angle on flow and temperature field in a slab continuous casting mould. Archives of Foundry Engineering. 11(2), 199-202.
  • [5] Kurz, W., Fisher, D. J. (1998). Fundamentals of Solidification. (4th ed.). London–Paris: Trans. Tech. Publ.
  • [6] Rolph, D. & Bathe, K. J. (1982). An efficient algorithm for analysis of nonlinear heat transfer with phase change. International Journal of Numerical Methods in Engineering. 18(1), 119-134. DOI: 10.1002/nme.1620180111.
  • [7] Skrzypczak, T. (2012). Sharp interface numerical modeling of solidification process of pure metal. Archives of Metallurgy and Materials. 57(4), 1189-1199. DOI: 10.2478/v10172-012-0133-1.
  • [8] Bell, G. E. (1978). A refinement of the heat balance integral method applied to a melting problem. International Journal of Heat and Mass Transfer. 21(11), 1357-1362. DOI: http://dx.doi.org/10.1016/0017-9310(78)90198-9.
  • [9] Chessa, J., Smolinski, P. & Belytschko, T. (2002). The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering. 53(8), 1959-1977. DOI: 10.1002/nme.386.
  • [10] Skrzypczak, T., Węgrzyn-Skrzypczak, E. (2012). Mathematical and numerical model of solidification process of pure metals. International Journal of Heat and Mass Transfer. 55(15-16), 4276-4284. DOI: http://dx.doi.org/ 10.1016/j.ijheatmasstransfer.2012.03.070.
  • [11] Chen, S., Merriman, B., Osher, S. & Smereka, P. (1997). A simple level set method for solving Stefan problems. Journal of Computational Physics. 135(1), 8-29. DOI: http://dx.doi.org/10.1006/jcph.1997.5721.
  • [12] Burbelko, A. A. Kapturkiewicz, W. Gurgul, D. (2007). Computation of interface curvature in modelling of solidification by the method of cellular automaton. Archives of Foundry Engineering. 7(1), 41-46.
  • [13] Mochnacki, B., Suchy, S. J. (1995). Numerical methods in computations of foundry processes. Polish Foundrymen's Technical Association, Kraków.
  • [14] Boucíguez, A. C., Lozano, R. F. & Lara, M. A. (2007). About the exact solution in two-phase Stefan problem. Thermal Engineering. 6(2), 70-75.
  • [15] Peng, D., Merriman, B., Osher ,S. & Zhao, H. (1999). A PDE-based fast local level set method. Journal of Computational Physics. 155, 410–438. DOI: http://dx.doi.org/10.1006/jcph.1999.6345.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c15a2c3e-5fc3-4a64-baa7-ff62c0156be5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.