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Abstract 
 

The paper presents a method of mathematical and numerical modelling of directional solidification process of pure metal in the two-

dimensional region. In this case, the thermal conditions associated with the process favours the occurrence of sharp solidification front. 

The mathematical description of the process is based on the Stefan formulation with appropriate continuity conditions on the solid-liquid 

interface. The numerical model is based on the finite element method (FEM). The calculations were made on a fixed mesh with diffused 

solidification front to avoid the difficulties associated with the discontinuity. Temporary position of the interface was calculated with the 

use of the level set method (LSM). Effect of the quality of the spatial discretization on the accuracy of numerical solution was investigated. 

Obtained results of the temporary front position were compared with the analytical solution. The correlation between the quality of the 

spatial discretization and the accuracy of the results was observed. Methods used in the work had significant impact on the computation 

time and helped avoid the explicit consideration of discontinuity of heat flux on the front.  

 

Keywords: Solidification process, Application of information technology to the foundry industry, Pure metal, Stefan problem, Finite 
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1. Introduction 
 

In the case of alloy solidification front often loses stability 

which is caused by the phenomenon called solutal undercooling 

[1, 2]. This phenomenon is often neglected but its effect is 

indirectly adopted in the models based on the solidification 

between the solidus and liquidus temperatures [3, 4]. During 

solidification of pure metal interface stability depends on the 

direction of heat flow [5]. In the case of directional solidification 

temperature of the liquid   always increases ahead of the interface, 

therefore the heat flow direction is opposite that of solid phase 

growth. When a small perturbation appears on a smooth interface, 

the heat flow through its tip increases and finally it melts back. 

Such process stabilizes the interface thus it remains sharp until the 

end of solidification. From this point of view directional 

solidification of a pure metal belongs to the group of Stefan 

problems which describe various phenomena that take place with 

the existence of a sharp internal interface.  

Numerical methods based on the Stefan formulation for 

solving solidification or melting processes, which can be found in 

the literature can be classified into following groups: 

 methods based on the diffused front. Solidification at a 

constant temperature is replaced by a process which takes 

place in a narrow temperature range [6] or temperature is 

constant but the front is diffused [7]. 
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 methods based on the adaptation of mesh where the edges 

of the finite elements are matched to the shape of the  

moving interface [8]; 

 methods based on discontinuous approximation functions in 

finite elements containing solidification interface. In this 

approach the finite element mesh does not change with time 

[9, 10]; 

Tracking solidification front is a significant challenge for 

anyone who create numerical models for Stefan problems. It is 

obvious, that the temporary position of the front can be arbitrarily 

positioned between the nodes, which leads to considerable 

difficulties in determining the temperature along it. LSM is a 

powerful and widely used method for the propagation of internal 

interfaces during solidification of pure metals and alloys in the 

micro-scale, two-phase flows, cracks propagation, computer 

vision, images processing, etc. LSM was first applied to Stefan 

problems in [11]. Other methods, such as cellular automata are 

also used for this purpose [12]. 

 

 

2. Governing equations 
 

Considered region consists of solid ΩS and liquid ΩL sub-regions 

(Fig. 1) separated by solidification front Γint.  

 

 
Fig. 1. Solidifying area contains moving internal boundary Γint 

 
Heat transport in solidifying area is described by the equation 

of heat conduction 
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Position of the front is determined using following  equation 
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Variable φ appearing in (2) is called the distance function. It 

measures the shortest distance between any point in the area and 
solidification interface Γint.  It is a function of position and time 
satisfying the following condition 
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Equations (1-2) are supplemented by following boundary (4), initial 

(5) and continuity conditions (6-7) 
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where T=T(x, y, t) is the temperature [K], λ=λ(T) - coefficient of 
thermal conductivity [J s-1 m-1 K-1], c=c(T) - specific heat [J kg-1 
K-1], ρ=ρ(T) - density [kg m-3], t - time [s], x, y - Cartesian 
coordinates [m], φ=φ(x, y, t) is a signed distance function [m], ux, 
uy - components of the interface velocity vector [m s-1], T0=T0(x, y) 
is the initial temperature [K], φ0 = φ0(x,y) - the initial position of 
solidification front [m], Tb=Tb(x, y) - a given boundary 
temperature [K], Γext - the external boundary, n - the direction of 
the vector pointing outwards Γext, n

s - the direction of the vector 
pointing outwards Γint, TM - melting (solidification) temperature 
[K], q - heat flux normal to the external boundary Γext [J s-1 m-2], u 
- velocity of the solidification front, L - latent heat of 
solidification [J kg-1], s, l - means a solid or liquid. 
 

2.1. Numerical model 
 
According to the weighted residuals method, equations (1-2) 

are multiplied by a weight function w=w(x, y) and integrated 
around the entire region 
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After spatial discretization using standard Galerkin formulation and 

time discretization based on the forward Euler method the following 
global finite element equations are obtained 
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where KT is the thermal conductivity matrix, MT - heat capacity 

matrix, BT - vector associated with the boundary conditions, Aφ - 
advection matrix, Mφ - mass matrix, Δt - time step [s],  f-1, f - 

time level.  
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3. Numerical examples 
 

The main purpose of the numerical simulations was to 

examine the impact of the quality of the spatial discretization on 

the accuracy of the method in modeling of the solidification 

process of pure copper. Adopted material properties [13] are 

summarized in Table 1. 

 

Table 1.  

Material properties of pure copper used in the model 

Material property Solid Liquid 

ρ [kg m-3] 8920.0 8300.0 

λ [J s-1 m-1 K-1] 330.0 250.0 

c [J kg-1 K-1] 420.0 544.0 

 

One series of tests were carried out using three types of 

meshes, and the calculated temporary position of the front was 

compared with analytical solution [14], where the change in the 

position of the front in time was described using the following 

equation 
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where k0 is a root of the transcendental equation 
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The coefficients in the above equation were defined as follows 
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where αs, αl are the coefficients of thermal diffusivity in a solid 

and liquid phase [m2 s-1] and Sts, Stl are Stefan numbers in the 

solid and liquid [-]. 

 

 
Fig. 2. Sketch of a test task 

 

The rectangular area measuring 0.02x0.2 [m], with the initial 

and boundary conditions are shown in Fig. 2. Adopted 

conditioning enabled the comparison of results obtained with the 

solution of the equation (12). 

Calculations were performed for meshes with an average 

element size h(e) = 2e-3, 1e-3, 5e-4 [m] corresponding to 1295, 

4694, 18645 nodes. Time step was constant and equal to 1e-4 [s].  

Summary of results for t = 1, 2, 5, 10, 20, 50 [s] and their 

comparison with the analytical solution (Fig. 3) clearly shows the 

good accuracy of the applied model. The quality of the spatial 

discretization affected a little the accuracy of the calculations 

because of simple shape of the solidification front. 

 

 
Fig. 3. Front position according to time 

 

A second series of tests were conducted to determine the 

effect of the quality of the spatial discretization on the accuracy of 

propagation of the curved front. The shape of the area 0.1x0.1 [m] 

and the boundary and initial conditions are shown in Fig. 4 . 

 

 
Fig. 4. Test of the curved front propagation 

 

In this case calculations were carried out with the use of 

meshes with an average element size h(e) = 5e-4, 3.75e-4, 2.5e-4 

[m] corresponding to 45852, 80858, 183614 nodes. Time step was 

equal to 1e-4 [s] for low and medium quality meshes and 5e-5 [s] 

for the best one. Fig. 5 shows the results of the calculations. 

Presented contours indicates temporary positions of the 

solidification front. Dashed line corresponds to the worst quality 

mesh. Thin continuous line relates to the average quality of the 

mesh and the thick continuous line shows the results for the most 

accurate spatial discretization. An analysis of the results which are 

obtained for different mesh qualities shows that a systematic error 

is introduced in the approximation of the absolute value of the 

distance function gradient. This effect is called "area loss" and is 

widely described in the literature [15]. 

Front position calculated on the most sparse mesh differs from 

the accurate position. Improving mesh quality above particular 

level is useless due to the lack of significant improvement in 

accuracy. Optimal element size for presented task is 3.75e-4 [m]. 
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Fig. 5. Temporary positions of the front for different mesh 

qualities after 0.1, 1, 5, 10, 15 [s] 

 

 

4. Conclusions 
 

Described mathematical and numerical models of solidification 
process of pure copper shows the possibility of introducing the 

continuity conditions at the sharp solidification front in the diffused 

form. The presented front tracking technique proves its usefulness  
in solving the problems with moving internal boundaries. 

Comparison of the results for meshes of varying quality, and the 
fronts of different shapes shows the phenomenon of "area loss" and 

how to minimize its impact on the accuracy of numerical 
calculations. 
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