PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electro-optical performance and anisotropic transport study of a Ga-free type-II superlattice barrier structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
In the past ten years, InAs/InAsSb type-II superlattice has emerged as a promising technology for high-temperature mid-wave infrared photodetector. Nevertheless, transport properties are still poorly understood in this type of material. In this paper, optical and electro-optical measurements have been realised on InAs/InAsSb type-II superlattice midwave infrared photodetectors. Quantum efficiency of 50% is measured at 150 K, on the front side illumination and simple pass configuration. Absorption measurement, as well as lifetime measurement are used to theoretically calculate the quantum efficiency thanks to Hovel’s equation. Diffusion length values have been extracted from this model ranging from 1.55 μm at 90 K to 7.44 μm at 200 K. Hole mobility values, deduced from both diffusion length and lifetime measurements, varied from 3.64 cm²/Vs at 90 K to 37.7 cm²/Vs at 200 K. The authors then discuss the hole diffusion length and mobility variations within temperature and try to identify the intrinsic transport mechanisms involved in the superlattice structure.
Twórcy
  • IES, Université de Montpellier, CNRS, 860 Saint Priest St., F-34000 Montpellier, CEDEX 5, France
  • LYNRED, BP 21, 364 de Valence Ave., 38113 Veurey-Voroize, France
  • ONERA, Chemin de la Hunière, F-91761 Palaiseau Cedex, France
  • ONERA, Chemin de la Hunière, F-91761 Palaiseau Cedex, France
  • IES, Université de Montpellier, CNRS, 860 Saint Priest St., F-34000 Montpellier, CEDEX 5, France
  • LYNRED, BP 21, 364 de Valence Ave., 38113 Veurey-Voroize, France
  • ONERA, Chemin de la Hunière, F-91761 Palaiseau Cedex, France
  • IES, Université de Montpellier, CNRS, 860 Saint Priest St., F-34000 Montpellier, CEDEX 5, France
Bibliografia
  • [1] Kinch, M. A. Fundamentals of Infrared Detector Materials. TT76. (SPIE Press, 2007).
  • [2] Kinch, M. A. State-of-The-Art Infrared Detector Technology. PM248 (SPIE Press, 2014).
  • [3] Maimon, S. & Wicks, G. W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  • [4] Ting, D. Z. et al. InAs/InAsSb type-II superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb. IEEE Photon. J. 10, 1–6 (2018). https://doi.org/10.1109/JPHOT.2018.2877632
  • [5] Soibel, A. et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Appl. Phys. Lett. 114, 161103 (2019). https://doi.org/10.1063/1.5092342
  • [6] Olson, B. V. et al. Vertical hole transport and carrier localization in InAs/InAs 1−x Sb x type-II superlattice heterojunction bipolar transistors. Phys. Rev. Appl. 7, 024016 (2017). https://doi.org/10.1103/PhysRevApplied.7.024016
  • [7] Casias, L. K. et al. Vertical carrier transport in strain-balanced InAs/InAsSb type-II superlattice material. Appl. Phys. Lett. 116, 182109 (2020). https://doi.org/10.1063/1.5144079
  • [8] Handbook Series on Semiconductor Parameters (Eds. Levinshteĭn, M. E., Rumyantsev, S. L. & Shur, M.) 1-5 (World Scientific, New Jersey, 1996).
  • [9] Klipstein, P. C. et al. Modeling InAs/GaSb and InAs/InAsSb super-lattice infrared setectors. J. Electron. Mater. 43, 2984-2990 (2014). https://doi.org/10.1007/s11664-014-3169-3
  • [10] Soibel, A. Temperature dependence of diffusion length and mobility in mid-wavelength InAs/InAsSb superlattice infrared detectors. Appl. Phys. Lett. 117, 231103 (2020). https://doi.org/10.1063/5.0027230
  • [11] Wu, D., Durlin, Q., Dehzangi, A., Zhang, Y. & Razeghi, M. High quantum efficiency mid-wavelength infrared type-II InAs/InAs1-x Sbx superlattice photodiodes grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 114, 011104 (2019). https://doi.org/10.1063/1.5058714
  • [12] Zavala-Moran, U. et al. Structural, optical and electrical character-izations of midwave infrared Ga-free type-II InAs/InAsSb super-lattice barrier photodetector. Photonics 7, 76 (2020). https://doi.org/10.3390/photonics7030076
  • [13] Bouschet, M. et al. Influence of pixel etching on electrical and electro-optical performances of a Ga-free InAs/InAsSb T2SL barrier photodetector for mid-wave infrared imaging. Photonics 8, 194 (2021). https://doi.org/10.3390/photonics8060194
  • [14] Arounassalame, V. et al. Electro-optical characterizations to study minority carrier transport in Ga-free InAs/InAsSb T2SL XBn midwave infrared photodetector. Proc. SPIE 11866, 1186606 (2021). https://doi.org/10.1117/12.2598159
  • [15] Webster, P. T., Riordan, N. A., Liu, S., Steenbergen, E. H. & Synowicki, R. A. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry. Appl. Phys. Lett. 106, 6 (2015). https://doi.org/10.1063/1.4908255
  • [16] Rhiger, D. R. & Smith, E. P. Infrared absorption near the bandgap in the InAs/InAsSb superlattice. Proc. SPIE 11503, 1150305 (2020). https://doi.org/10.1117/12.2569820
  • [17] Haddadi, A. et al. High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx /AlAs1-x Sbx superlattices. Appl. Phys. Lett. 107, 141104 (2015). https://doi.org/10.1063/1.4932518
  • [18] Ariyawansa, G., Duran, J., Reyner, C. & Scheihing, J. InAs/InAsSb Strained-layer superlattice mid-wavelength infrared detector for high-temperature operation. Micromachines 10, 806 (2019). https://doi.org/10.3390/mi10120806
  • [19] Arounassalame, V. et al. Anisotropic transport investigation through different etching depths in InAs/InAsSb T2SL barrier midwave infrared detector. Infrared Phys. Technol. 126, 104315 (2022). https://doi.org/10.1016/j.infrared.2022.104315
  • [20] Krizman, G. et al. Magneto-spectroscopy investigation of InAs/InAsSb superlattices for midwave infrared detection. J. Appl. Phys. 130, 055704 (2021). https://doi.org/10.1063/5.0054320
  • [21] Klipstein, P. C. Perspective on III–V barrier detectors. Appl. Phys. Lett. 120, 060502 (2022). https://doi.org/10.1063/5.0084100
  • [22] Bellotti, E. Disorder-induced degradation of vertical carrier transport in strain-balanced antimony-based superlattices. Phys. Rev. Appl. 16, 054028 (2021). https://doi.org/10.1103/PhysRevApplied.16.054028
  • [23] Mott, N. F. Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos. Mag. 19, 835–852 (1969). https://doi.org/10.1080/14786436908216338
  • [24] Mott, N. F. On the transition to metallic conduction in semiconductors. Can. J. Phys. 34, 1356-1368 (1956). https://doi.org/10.1139/p56-151
  • [25] Mott, N. F. Electrons in disordered structures. Adv. Phys. 16, 49-144 (1967). https://doi.org/10.1080/00018736700101265
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c15790a4-7257-42f2-9a9a-9d54cd6bb989
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.