Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Storage of liquefied natural gas (LNG) is one of the most important processes taking place during liquefaction which is also significant for the regasification and receiving terminals operation. The task of the tanks lies not only in the safe storage of gas, but also in preventing its evaporation related, among others, to the heat transfer through the walls and roof of the tank. Even a small quantity of heat flowing to the LNG increases its internal energy, conseąuently leading to the evaporation of a certain quantity of LNG. Phase transitions of even small amounts of liquid may cause changes in the composition of both LNG and its density, which may contribute to the formation of stratification of liquefied gas. The geometric parameters of the storage tanks have a very large impact on the amount of heat penetrating the tank: with the increase of its size the surface area of heat transfer increases, too. The dependence of heat penetrating the tank, its geometrie dimensions and the effect of temperature on the stability of the stored LNG are discussed in this paper .
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
355--365
Opis fizyczny
Bibliogr. 10 poz., wykr., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
Bibliografia
- [1] Aimikhe, V J.: Predicting critical internal diameters ofonshore LNG storage tanks for minimizing boil offgas production, International conference and exhibition held in Abuja, Nigeria, SPE 150796, 2011.
- [2] Adom, E., Sheikh, I. and Xianda, J.: Modelling of boil off gas in liquefied natural gas tanks. A case study. International Journal of Engineering and Technology. Vol.2(4): 292-296. 2010.
- [3] George, G.: A dynamic model for liquefied natural gas evaporation during marine transport. International Journal of Thermodynamics. Vol.ll ppl23-131. 2008.
- [4] Hasan, M, Zheng, A. and Karimi, L: Minimizing boil off losses in liquefied natural gas transportation. Journal of Industrial Engineering Chemistry, 117576 Rse,48(21). pp 9571-9580. 2009.
- [5] Lee, G.S., Chang, Y.S., Kim, M.S., Ro, S.T.: Thermodynamic analysis of extraction processes for the utilization of LNG cold energy. Cryogenics 36. 35-40. 1996.
- [6] Łaciak M: Zwiększenie efektywności energetycznej odparowania oraz bezpieczeństwa magazynowania skroplonego gazu ziemnego (LNG). Wyd. AGH, Kraków 2013 - 88 str. (monografia).
- [7] Łaciak, M.: Thermodynamic processes involving Liquefied Natural Gas at the LNG receiving terminals. Archives of Mining Sciences. Vol.58. Is. 2., 349-359. 2013.
- [8] Oliinyk A., Łaciak M: Safety technical problems associated with the storage of liquefied natural gas (LNG). AGH Drilling, Oil, Gas. Vol. 30. No 1, p. 181-190. 2013.
- [9] REFPROP, NIST SRD, Version 9.0.
- [10] Yang,C.C, Huang,Z.: Lower Emission LNG Vaporization. LNG Journal, Nov./Dec. 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1563ea0-5ea4-4b46-aee9-bea76681b162