Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Sorption studies, to determine the CO2 sorption capacity of coal, were carried out using eight ortho-lignite samples of different lithotypes, to investigate the possibility of CO2 storage in lignite deposits. Equations determining a number of parameters and indicators used to delineate the experimental data and to differentiate the samples examined include: Langmuir isotherms; the Dubinin-Radushkevich (DR) equation that describes the theory of volume filling of micropores; and the Brunauer, Emmett and Teller (BET) equation used to calculate the volume and surface area of a monolayer. The results obtained were compared with the petrographic composition and ultimate and proximate analysis of lignite. There is a large correlation between sorption and petrographic composition, a positive impact of the Gelification Index on the sorption process and a clear relationship between the sorption (Langmuir and DR) and ash content. The best CO2 sorption properties were found for xylo-detritic and detro-xylitic lignites. Based on the tests carried out, a preliminary assessment of the suitability of lignite for CO2 storage can be made.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
786--800
Opis fizyczny
Bibliogr. 69 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Energy and Fuels, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- 1. Azmi, AS., Yusup, S., Muhamad, S., 2006. The influence of temperature on adsorption capacity of Malaysian coal. Chemical Engineering and Processing: Process Intensification, 45: 392-396.
- 2. Baran, P., Zarębska, K., 2015. Estimating the limiting absolute sorption of carbon dioxide by coal for coal-bed storage of carbon dioxide. International Journal of Oil, Gas and Coal Technology, 10: 179-193.
- 3. Baran, P., Broś, M., Nodzeński, A., 2010. Studies on CO2 sorption on hard coal in the near-critical area with regard to the aspect of sequestration. Archiwum Górnictwa, 55: 59-68.
- 4. Baran, P., Cygankiewicz, J., Zarębska, K., 2013. Carbon dioxide sorption on Polish ortholignite coal in low and elevated pressure. Journal of CO2 Utilization, 3-4: 44-48.
- 5. Baran, P., Zarębska, K., Nodzeński, A., 2014. Energy aspects of CO2 sorption in the context of sequestration in coal deposits. Journal of Earth Science, 25: 719-726.
- 6. Bielowicz, B., 2012. A new technological classification of low-rank coal on the basis of Polish deposits. Fuel, 96: 497-510.
- 7. Bielowicz, B., 2019. The suitability of Polish lignite for gasification. Clean Technologies and Environmental Policy, 21: 1115-1130.
- 8. Bielowicz, B., Kasiński, J.R., 2014. The possibility of underground gasification of lignite from Polish deposits. International Journal of Coal Geology, 131: 304-318.
- 9. Botnen, L.S., Fisher, D.W., Dobroskok, A.A., Bratton, T.R.H., Greaves, K., McLendon, T., Steiner, G., Sorensen, J.A., Steadman, E.N., Harju, J.A., 2009. Field test of CO2 injection and storage in lignite coal seam in North Dakota. Energy Procedia, 1: 2013-2019.
- 10. Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60: 309-319.
- 11. Clarkson, C.R., Bustin, R.M., 1997. Variation in permeability with lithotype and maceral composition of Creiaceous coals of the Canadian Cordillera. International Journal of Coal Geology, 33: 135-151.
- 12. Crosdale, P.J., Beamish, B.B., Valix, M., 1998. Coalbed methane sorption related to coal composition. International Journal of Coal Geology, 35: 147-158.
- 13. Czarnecki L., Frankowski R., Ślusarczyk G., 1992. Syntetyczny profil litostratygraficzny rejonu złoża Bełchatów dla potrzeb Bazy Danych Geologicznych (in Polish). Górnictwo Odkrywkowe, 3-4.
- 14. Diessel, C.F.., 1986. On the correlation between coal facies and depositional environments. In: Proceedings of the 20th Symposium on Advances in the Study of the Sydney Basin, Department of Geology, University of Newcastle: 19-22.
- 15. Drobniak, A., Mastalerz, M., 2006. Chemical evolution of Miocene wood: example from the Belchatow brown coal deposit, central Poland. International Journal of Coal Geology, 66: 157-178.
- 16. Dubinin, M.M., 1960. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews, 60: 235-241.
- 17. Dutka, B., Kudasik, M., Pokryszka, Z., Skoczylas, N., Topolnicki, J., Wierzbicki, M., 2013. Balance of CO2/CH4 exchange sorption in a coal briquette. Fuel Processing Technology, 106: 95-101.
- 18. Gale, J., Freund, P., 2001. Coal-bed methane enhancement with CO2 sequestration worldwide potential. Environmental Geosciences, 8: 210-217.
- 19. Gensterblum, Y., van Hemert, P., Billemont, P., Battistutta, E., Busch, A., Krooss, B.M., De Weireld, G., Wolf, K.-H.A.A., 2010. European inter-laboratory comparison of high pressure CO2 sorption isotherms II: natural coals. International Journal of Coal Geology, 84: 115-124.
- 20. Grimes, W.R., 1982. The Physical Structure of Coal: 21-42. Academic Press.
- 21. Harpalani, S., Mitra, A., 2010. Impact of CO2 injection on flow behavior of coalbed methane reservoirs. Transport in Porous Media, 82: 141-156.
- 22. ICCP, 1971. International Handbook of Coal Petrography, 1st Supplement to 2nd Edition. CNRS, Paris.
- 23. ICCP, 2001a. The new inertinite classification (ICCP System 1994). Fuel, 80: 459-471.
- 24. ICCP, 2001b. The new vitrinite classification (ICCP System, 1994). Fuel, 80: 459-471.
- 25. ISO 13909-1:2016. Hard coal and coke - Mechanical sampling.
- 26. ISO 7404-2:2009. Methods for the petrographic analysis of coals - Part 2: Methods of preparing coal samples. Methods for the petrographic analysis of coals - Part 3: Method of determining maceral group composition.
- 27. Kalaitzidis, S., Bouzinos, A., Papazisimou, S., Christanis, K., 2004. A short-term estabilishment of forest fen habitiat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece. International Journal of Coal Geology, 57: 243-263.
- 28. Karczewska, A., Chodak, T., Kaszubkiewicz, J., 1996. The suitability of brown coal as a sorbent for heavy metals in polluted soils. Applied Geochemistry, 11: 343-346.
- 29. Kasiński, J.., Piwocki, M., Sadowska, E., Ziembińska-Tworzydło, M., 2010. Lignite of the Polish Lowlands Miocene: characteristics on a base of selected profiles (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 439: 99-154.
- 30. Kozula, R., 1998. Dodatek nr 1 do dokumentacji eologicznej w kategorii B złoża węgla brunatnego Pątnów IV w Kleczewie (in Polish). Archiwum KWB Konin.
- 31. Kozula, R., 2002. Dokumentacja geologiczna złoża węgla brunatnego „Sieniawa” w kategorii C1 (in Polish). Archiwum KWB Sieniawa S.A.
- 32. Kudasik, M., Skoczylas, N., Pajdak, A., 2017. The repeatability of sorption processes occurring in the coal-methane system during multiple measurement series. Energies, 10.
- 33. Kwiecińska, B., Wagner, M., 1997. Typizacja cech jakościowych węgla brunatnego z krajowych złóż według kryteriów petrograficznych i chemiczno-technologicznych do celów dokumentacji geologicznej złóż oraz obsługi kopalń (in Polish). Wydawnictwo Centrum PPGSMiE PAN, Kraków.
- 34. Kwiecińska, B., Wagner, M., 2001. Atlas petrograficzny węgla brunatnego - litotypy i macerały (in Polish). Wydawnictwo JAK Andrzej Choczewski, Kraków.
- 35. Lamberson, M.N., Bustin, R.M., Kalkreuth, W., 1991. Lithotype (maceral) composition and variation as correlated with paleo-wetland environments, Gates Formation, northeastern British Columbia, Canada. International Journal of Coal Geology, 18: 87-124.
- 36. Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and plutonium. Journal of the American Chemical Society, 40: 1361-1403.
- 37. Laxminarayana, C., Crosdale, P.J., 1999. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. International Journal of Coal Geology, 40: 309-325.
- 38. Li, X., Fang, Z., 2014. Current status and technical challenges of CO2 storage in coal seams and enhanced coalbed methane recovery: an overview. International Journal of Coal Science and Technology, 1: 93-102.
- 39. Macuda, J., Nodzeński, A., Wagner, M., Zawisza, L., 2011. Sorption of methane on lignite from Polish deposits. International Journal of Coal Geology, 87: 41-48.
- 40. Maphala, T., Wagner, N.J., 2012. Effects of CO2 storage in coal on coal properties, 6th Trondheim Carbon Capture and Storage Conference (TCCS-6). Energy Procedia, 23: 426-438.
- 41. Mastalerz, M., Gluskoter, H., Rupp, J., 2004. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA. International Journal of Coal Geology, 60: 43-55.
- 42. Mazzotti, M., Pini, R., Storti, G., 2009. Enhanced coalbed methane recovery. The Journal of Supercritical Fluids, 47: 619-627.
- 43. Nič, M., 1997. IUPAC Compendium of Chemical Terminology 2nd Edition. IUPAC Compendium of Chemical Terminology Gold Book 2.
- 44. Ozdemir, E., Morsi, B.I., Schroeder, K., 2004. CO2 adsorption capacity of argonne premium coals. Fuel, 83: 1085-1094.
- 45. Pan, Z., Ye, J., Zhou, F., Tan, Y., Connell, L.D., Fan, J., 2018. CO2 storage in coal to enhance coalbed methane recovery: a review of field experiments in China. International Geology Review, 60: 754-776.
- 46. Perera, M.S.A., Ranjith, P.G., 2015. Enhanced Coal Bed Methane Recovery: Using Injection of Nitrogen and Carbon Dioxide Mixture. Handbook of Clean Energy Systems. John Wiley & Sons.
- 47. PGI-NRI, 2017. PGI-NRI [WWW Document]. http://geoportal.pgi.gov.pl/surowce.
- 48. Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B.J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., Wagner, N., 2017. Classification of liptinite - ICCP System 1994. International Journal of Coal Geology, 169: 40-61.
- 49. Piwocki, M., 2004. Paleogen (in Polish). In: Budowa Geologiczna Polski, 1: Stratygrafia. Part 3a: Kenozoik, Paleogen, Neogen (eds. T.M. Peryt and M. Piwocki): 22-71. Państwowy Instytut Geologiczny.
- 50. Piwocki, M., Ziembińska-Tworzydło, M., 1997. Neogene of the Polish Lowlands - lithostratigraphy and pollen-spore zones. Geological Quarterly, 41 (1): 21-40.
- 51. Reznik, A.A., Singh, P.K., Foley, W.L., 1984. An analysis of the effect of CO2 injection on the recovery of in-situ methane from bituminous coal: an experimental simulation. Society of Petroleum Engineers Journal, 24: 521-528.
- 52. Romanov, V.N., Hur, T.B., Fazio, J.J., Howard, B.H., Irdi, G.A., 2013. Comparison of high-pressure CO2 sorption isotherms on Central Appalachian and San Juan Basin coals. International Journal of Coal Geology, 118: 89-94.
- 53. Russell, N.J., 1984. Gelification of Victorian tertiary soft brown coal wood. I. Relationship between chemical composition and microscopic appearance and variation in the degree of gelification. International Journal of Coal Geology, 4: 99-118.
- 54. Russell, N.J., Barron, P.F., 1984. Gelification of Victorian tertiary soft brown coal wood. II. Changes in chemical structure associated with variation in the degree of gelification. International Journal of Coal Geology, 4: 119-142.
- 55. Sadowska, A., Giża, B., 1991. The flora and age of the brown coal from Pątnów. Acta Palaeobotanica, 31: 215-225.
- 56. Span, R., Wagner, W., 1996. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 k at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25: 1509-1596.
- 57. Stach, E., Murchison, D., 1982. Stach's Textbook of coal Petrology. Borntraeger, Berlin.
- 58. Švábová, M., Weishauptová, Z., Přibyl, O., 2012. The effect of moisture on the sorption process of CO2 on coal. Fuel, 92: 187-196.
- 59. Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G.H., Flores, D., 2005. Classification of huminite - ICCP System 1994. International Journal of Coal Geology, 62: 85-106.
- 60. Szwed-Lorenz, J., 1991. Petrologic evaluation of Polish soft brown coals as raw material for different use. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 63, Monogr., 29. Wrocław.
- 61. Taylor, G.H., Teichmuller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic Petrology: A New Handbook Incorporating Some Revised Parts of Stach's Textbook of Coal Petrology. Gebrüder Borntraeger, Berlin.
- 62. UN-ECE, 1998. International Classification of In-Seam Coals Symbol Number: ENERGY/1998/19 [WWW Document].
- 63. Wagner, M., 1982. Doppleritization of xylitic coal in the light of petrographic and chemical investigations. International Journal of Coal Geology, 2: 181-194.
- 64. Wagner, M., 2007. Zmienność petrologiczno-sedymentologiczna i własności technologiczne kredy jeziornej w osadach neogenu typu wapiennego zapadliska tektonicznego na przykładzie złoża węgla brunatnego „Szczerców” (in Polish). AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków.
- 65. Wagner, M., Żerda, T., John, A., 1983. Gelification in the light of petrographic and physico-chemical studies (in Polish with English summary). Geological Quarterly, 27 (1): 87-104.
- 66. Wang, K., Fu, X., Qin, Y., Sesay, S.K., 2011. Adsorption characteristics of lignite in China. Journal of Earth Science, 22: 371-376.
- 67. Wang, S., Shao, L.-Y., Yan, Z.-M., Shi, M.-J., Zhang, Y.-H., 2019. Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China. Journal of Palaeogeography, 8: 17.
- 68. Zelenka, T., Taraba, B., 2014. Sorption of CO2 on low-rank coal: Study of influence of various drying methods on microporous characteristics. International Journal of Coal Geology, 132: 1-5.
- 69. Zhang, R., Liu, S., 2017. Experimental and theoretical characterization of methane and CO2 sorption hysteresis in coals based on Langmuir desorption. International Journal of Coal Geology, 171: 49-60.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c155f16d-f46a-45a8-be6d-01ff3fd34376
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.