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1. INTRODUCTION

Problems of reconstructing unknown characteristics of dynamical systems through
measurements of a part of the phase coordinates are embedded into the theory of
inverse problems of dynamics. This theory is intensively developed at the present
time. One of approaches to solving similar problems based on methods of the theory
of positional control [1] was suggested in [2] and developed in [3–10]. In the present
paper following the research in this field, an algorithm of dynamical reconstruction
of an unmeasured coordinate of a second-order system is designed. This algorithm is
dynamical and works in the real time mode. It is stable with respect to informational
noises and computational errors.

Briefly, the essence of the problems under consideration can be formulated in the
following way. There is a dynamical system Σ functioning on a finite time interval
T = [0, ϑ], ϑ = const ∈ (0,+∞). Its trajectory is

x(t) = x(t;x0) ∈ Rq, t ∈ T.

On the interval T , a uniform net ∆ = {τi}mi=0 with a step δ > 0 is taken, τ0 = 0,
τi+1 = τi + δ, τm = ϑ. An output

y(t) = Cx(t)
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is measured at the moments τi (C is an r×q-dimensional matrix). Results of inaccurate
measurements are vectors ξi ∈ Rr satisfying the inequalities

‖ξi − y(τi)‖ ≤ h, i ∈ [0 : m− 1],

where h is some given accuracy; the symbol ‖x‖ denotes the Euclidean norm of the
vector x, the notation i ∈ [0 : m − 1] means that i takes all integer values from 0
up to m − 1. It is required to design an algorithm that allows us to reconstruct an
approximation to the solution x(·).

The algorithms suggested in the works cited above realize the reconstruction
process in the mean-square metric. In this paper, a solving algorithm for recon-
structing unmeasured coordinates in the uniform metric is presented. We consider
a second-order system. For other dynamical algorithms for reconstructing unknown
characteristics (in the L2-metric) of the system considered in the paper, see [10].

2. PROBLEM STATEMENT. SOLUTION SCHEME

We consider an initial-value problem for a system of the form

ẋ1(t) = k(t)x2(t) + x1(t)(λx2(t)− ν),

ẋ2(t) = −k(t)x2(t)− (λx1(t) + µ)x2(t) + γ(t),
(2.1)

t ∈ T, x1(0) = x10, x2(0) = x20.

This model describes the process of the diffusion of innovations [11]. We assume that
the constants λ, µ and the continuous functions k(t) and γ(t) are known. The constant
ν (−∞ < a ≤ ν ≤ b < +∞) is unknown as well. At discrete, frequent enough, time
moments

τi ∈ ∆ = {τi}mi=0, τi+1 = τi + δ, τ0 = 0, τm = ϑ,

the coordinate x2(τi) is inaccurately measured. Results of measurements (numbers
ξhi ∈ R) satisfy the inequalities

|x2(τi)− ξhi | ≤ h, (2.2)

where h ∈ (0, 1) is the measurement accuracy. Here and below, |x| denotes the modulus
of the number x. It is required to design an algorithm for reconstructing the unknown
coordinate x1(·). This is the informal statement of the problem considered in the
paper.

The algorithm for solving the problem consists of the following. An auxiliary
dynamical system M (a model) is introduced. This model functioning on the time
interval T has an unknown input (control) uh(·) and an output wh(·). Then, the
problem of reconstructing x1(·) is replaced by the problem of forming a control uh(·)
in the model (by the feedback principle) in such a way that the deviation of x1(·) from
uh(·) in the uniform metric is small if the measurement accuracy h is small enough.
The process of synchronous feedback control of the systems Σ and M is organized on
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the interval T . This process is decomposed into (m − 1) identical steps. At the i-th
step carried out on the time interval δi = [τi, τi+1), the following actions are fulfilled.
First, at the time moment τi, according to the chosen rule uh, the control

uh(t) = uhi ∈ U(τi, ξ
h
i , w

h(τi)), t ∈ [τi, τi+1),

is calculated. Then (till the moment τi+1), the control uh = uh(t), τi ≤ t < τi+1, is
fed onto the input of the system M . The value wh(τi+1) is the result of the work of
the algorithm at the i-th step. Thus, the complexity of solving the problem is reduced
to the appropriate choice of the model M and the function uh(·).

So, the procedure for solving the reconstruction problem is, in essence, equivalent
to the procedure for solving the following two problems:

a) the problem of choosing the model M ;
b) the problem of choosing the rule uh for forming the control in the model.
Let us proceed to the rigorous statement of the problem in question. Fix a family

of partitions of the interval T :

∆h = {τi,h}mhh=0, τi+1,h = τi,h + δ(h), τ0,h = 0, τmh,h = ϑ. (2.3)

Problem 2.1. It is required to specify differential equations of the model M :

ẇh(t) = f1(ξhi , w
h(τi), u

h
i ), t ∈ δh,i = [τi, τi+1), (2.4)

τi = τi,h, i ∈ [0 : mh − 1], wh(t0) = wh0 , wh(t) ∈ R,

and the rule for forming controls uhi at the moments τi as some mapping

U : {τi, ξhi , wh(τi)} → uhi ∈ R (2.5)

such that the convergence
sup
t∈T
|uh(t)− x1(t)| → 0 (2.6)

takes place as h tends to 0. Here, uh(t) = x10 for t ∈ [0, ζ(h)), uh(t) = uhi for t ∈ δh,i,
τi+1,h > ζ(h), ζ(h)→ 0 as h→ 0.

3. SOLVING METHOD

Let us proceed to the description of the solving method of the problem under consid-
eration. We introduce the following notation:

f(t, x2) = −k(t)x2 − µx2 + γ(t), ũ(t) = −x1(t).

In this case, the second equation of system (2.1) can be rewritten in the form

ẋ2(t) = f(t, x2(t)) + λx2(t)ũ(t).
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Let a number M∗ > 0 be such that

|x2(t)| ≤M∗ for t ∈ [0, ϑ], (3.1)

‖f(t, x2(t))− f(τi, ξ
h
i )‖ ≤M∗(δ + h+ ω(δ)) for t ∈ δi = [τi, τi+1), (3.2)

where τi = τi,h, ω(δ) is the modulo of continuity of the function t→ γ(t), t ∈ T , i.e.,

ω(δ) = sup{|γ(t)− γ(t− δ)| : t ∈ [δ, ϑ], 0 < δ < ϑ}.

Inequality (3.2) is a consequence of (2.2) and (3.1).
Fix a family ∆h of partitions of the interval T of form (2.3) and some auxiliary

function α(h) : (0, 1) → (0, 1) and choose a linear system M (a model) described by
the following equation:

ẇh(t) = f(τi, ξ
h
i )− λξhi uhi for a.a. t ∈ δi = [τi, τi+1), (3.3)

i ∈ [0 : m− 1], τi = τi,h, m = mh, with the initial condition

wh(0) = x2(0).

Let

uhi ∈ U(τi, ξ
h
i , w

h(τi)) = − arg min{2λξhi (wh(τi)− ξhi )u+ αu2 : u ∈ R} =

=
1

α
λξhi [wh(τi)− ξhi ] for t ∈ δi, α = α(h).

(3.4)

Thus, in the equation of the model (see (2.4)), we have

f1(ξhi , w
h(τi), u

h
i ) = f(τi, ξ

h
i )− λξhi uhi .

The model control uhi is determined by the feedback principle (see (2.5) and (3.4)).
Hence, equation (3.3) takes the form

ẇh(t) = f(τi, ξ
h
i )− 1

α
(λξhi )2[wh(τi)− ξhi ] for a.a. t ∈ δi. (3.5)

Let us describe the algorithm for reconstructing the unmeasured coordinate x1(·)
in the real time mode. Before the algorithm starts, we fix some accuracy h ∈ (0, 1) and
a partition ∆h. The work of the algorithm is decomposed into m− 1 identical steps.
At the i-th step carried out on the time interval δi = [τi, τi+1), τi = τi,h, the following
sequence of actions is fulfilled. First, at the moment τi, the control uhi is calculated
by formula (3.4). After that, this constant control is fed onto the input of model (3.3)
on the time interval [τi, τi+1). As a result, under the action of this control, the model
passes from the state wh(τi) into the state wh(τi+1) = wh(τi+1; τi, w

h(τi), u
h
i ). The

procedure stops at the moment ϑ.
Hereinafter, we assume that the following condition is fulfilled.

Condition 3.1. mins∈T (λx2(s))2 ≥ b > 0.
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By the symbol Ξ(x(·), h), we denote the set of all piecewise constant functions
ξ(·) : T → R, ξ(t) = ξhi for t ∈ [τi, τi+1), i ∈ [0 : mh−1], where the numbers ξhi satisfy
inequalities (2.2).

The following lemma is valid.

Lemma 3.2. Let the conditions

α(h)→ 0, δ(h)→ 0, δ(h)α−1(h)→ 0, hα−1(h)→ 0 as h→ 0 (3.6)

be fulfilled. Then the inequalities

τi+1∫
τi

|ẇh(s)| ds ≤ Cδ (3.7)

are fulfilled uniformly with respect to any h ∈ (0, 1), ξh(·) ∈ Ξ(x(·), h), and
i ∈ [0 : mh − 1]. Here C = const > 0, δ = δ(h), τi = τi,h.

Proof. Taking into account (2.5), we conclude that the following equalities

d

dt
[wh(t)− x2(t)] = f(τi, ξ

h
i )− 1

α
(λξhi )2[wh(τi)− ξhi ]− f(t, x2(t))− λx2(t)ũ(t) =

= − 1

α
(λx2(s))2[wh(t)− x2(t)] + Ψ

(1)
h (t) for a. a. t ∈ δi

are fulfilled. In addition,
wh(0) = x2(0),

where
Ψ

(1)
h (s) = Ψh(s) + Ψ

(4)
h (s),

Ψh(s) = Ψ
(2)
h (s) + Ψ

(3)
h (s),

Ψ
(2)
h (s) = − 1

α
(λx2(s))2[x2(s)−ξhi ]+[f(τi, ξ

h
i )−f(s, x2(s))], Ψ

(3)
h (s) = −λx2(s)ũ(s),

Ψ
(4)
h (s) =

1

α
(λx2(s))2[wh(s)−wh(τi)]−

1

α
(λξhi )2[(ξhi )2−x22(s)][wh(τi)− ξhi ], s ∈ δi.

Here, in view of (2.2), (3.2), (3.3), and (3.7), the family of the functions Ψh(·) is
bounded:

|Ψh(s)| ≤M (1) for a.a. t ∈ T (3.8)

uniformly with respect to h ∈ (0, 1). Further, we have

wh(t)− x2(t) =

t∫
0

e
−

t∫
s

1
α (λx2(s))

2ds
Ψ

(1)
h (s) ds, t ∈ T. (3.9)

Introduce the notation:

µ(t) = max
0≤τ≤t

|wh(τ)− x2(τ)|, fh(t) = f(τi, ξ
h
i ) for t ∈ δi.
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In virtue of the inequality

sup{|fh(t)| : h ∈ (0, 1), t ∈ T} ≤ K0, (3.10)

the estimates

λ2

α

τi+1∫
τi

x22(s)|ẇh(s)| ds ≤ K2

α

τi+1∫
τi

|fh(s)− 1

α
(λξhi )2[wh(τi)− ξhi ]| ds ≤

≤ K3
δ

α
+K4

δ

α2
(µ(τi) + h), µ(τi) ≤ µ(τi+1)

(3.11)

are true. Note that

|Ψ(1)
h (t)| ≤ |Ψh(t)|+K5

h+ δ

α
(µ(τi) + h) +

1

α
(λx2(t))2

τi+1∫
τi

|ẇh(s)| ds for t ∈ δi.

(3.12)
Thus, taking into account (3.9)–(3.12), we obtain

µ(t) ≤ K6

( δ
α

+
h

α
µ(τi) +

h2

α
+

δ

α2
µ(τi) +

δh

α2

) t∫
0

e
−

t∫
s

1
α (λx2(v))

2dv
ds+ (3.13)

+

t∫
0

e
−

t∫
s

1
α (λx2(v))

2 dv
|Ψh(s)| ds, t ∈ δi.

Using inequality (3.8), we derive

t∫
0

e−
1
α (λx2

2(s))
2(t−s)|Ψh(s)| ds ≤ K7

t∫
0

e
−

t∫
s

1
α (λx2(v))

2 dv
ds. (3.14)

Then, in virtue of condition 3.1, the following relations

t∫
0

e
−

t∫
s

1
α (λx2(v))

2 dv
ds ≤

t∫
0

e−
b
α (t−s) ds =

α

b
e−

b
α (t−s)

∣∣∣t
0

=
α

b
(1−e− b

α t) ≤ K8α (3.15)

hold. Thus, from (3.14) and (3.15) we obtain

t∫
0

e
−

t∫
s

1
α (λx2(v))

2 dv
|Ψh(s)| ds ≤ K9α. (3.16)

In turn, from (3.13) we derive (assuming t = τi and taking into account (3.8), (3.16))

µ(τi) ≤ K6K8

(
δ + h2 +

δ

α
µ(τi) + hµ(τi) +

δh

α

)
+K9α.
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In this case, (
1−K6K8

(
h+

δ

α

))
µ(τi) ≤ K10

(
α+ h+ δ +

δh

α

)
.

Therefore, for sufficiently small h (for example, such that 1−K6K8(h+ δ
α ) ≤ 1

2 ), we
have

µ(τi) ≤ K11

(
α+ δ + h+

δh

α

)
≤ K12(α+ h+ δ) (3.17)

(see (3.6)). From (3.11), in virtue of Condition 3.1, we deduce that

τi+1∫
τi

|ẇh(s)| ds ≤ K13

{
δ +

δ

α
(µ(τi) + h)

}
.

Using again (3.6), we have

δ +
δ

α
(µ(τi) + h) ≤ δ +K14

δ

α

(
α+ δ + h+

δh

α

)
≤ K15δ.

Consequently,
τi+1∫
τi

|ẇh(s)| ds ≤ K16δ.

Inequality (3.7) is established. The lemma is proved.

Lemma 3.3. Let conditions (3.6) be fulfilled and δβ(h)α−1(h) → +∞ (for some
β ∈ (0, 1)) as h→ 0. Let

uh(t) =

{
x10, t ∈ [0, ζ(h)),
−vh(t), t ∈ [ζ(h), ϑ],

where
vh(t) = vhi = −uhi for t ∈ [τi, τi+1), ζ(h) = δβ(h).

Then the inequality

sup
t∈T
|uh(t)− x1(t)| ≤ C(α(h) + (h+ δ(h))α−1(h) + ω(δ(h)) + α(h)δ−β(h)),

is true. Here, the constant C does not depend on h ∈ (0, 1), t ∈ T , ξh(·) ∈ Ξ(x(·), h).

Proof. It is easily seen that the equality

1

α
(λx2(t))2[wh(t)− x2(t)] =

t∫
0

d

ds

(
e
− 1
α

t∫
s

(λx2(v))
2dv)

Ψ
(1)
h (s) ds =

= −λ
t∫

0

d

ds

(
e
− 1
α

t∫
s

(λx2(v))
2dv)

x2(s)ũ(s) ds+

4∑
j=1

t∫
0

d

ds

(
e
− 1
α

t∫
s

(λx2(v))
2dv)

γ
(j)
δ (s) ds,

(3.18)
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is valid. Here,

γ
(1)
δ (s) =

1

α
(λx2(s))2[wh(s)− wh(τi)],

γ
(2)
δ (s) = − 1

α
(λx2(s))2[x2(s)− ξhi ],

γ
(3)
δ (s) = f(τi, ξ

h
i )− f(s, x2(s)),

γ
(4)
δ (s) = − 1

α
λ2[(ξhi )2 − x22(s)][wh(τi)− ξhi ] for a.a. s ∈ δi.

Due to (3.7), we conclude that

|γ(1)δ (s)| ≤ C1
δ

α
, s ∈ T. (3.19)

In turn, using (2.2) and (3.1), we have

|γ(2)δ (s)| ≤ C2
δ + h

α
, s ∈ T. (3.20)

In addition (see (2.2) and (3.3)), the estimates

|γ(3)δ (s)| ≤M∗(δ + h+ ω(δ)), s ∈ T, (3.21)

|γ(4)δ (s)| ≤ c3
δ + h

α
, s ∈ T, (3.22)

are true. In this case, taking into account (3.15) and (3.16), from (3.19)–(3.22) we
deduce that ∣∣∣∣∣

4∑
j=1

t∫
0

d

ds

(
e
− 1
α

t∫
s

(λx2(v))
2dv)

γ
(j)
δ (s) ds

∣∣∣∣∣ ≤ (3.23)

≤ %(h, α, δ) = C4

(
δ + h+ ω(δ) +

δ + h

α

)
.

Integrating the first term on the right-hand side of equality (3.18) by parts, we get

−
t∫

0

d

ds

(
e
− 1
α

t∫
s

(λx2(v))
2dv)

λx2(s)ũ(s) ds = (3.24)

= λe
− 1
α

t∫
0

(λx2(v))
2dv
x2(0)ũ(0)− λx2(t)ũ(t) +

t∫
0

e
− 1
α

t∫
s

(λx2(v))
2dv d

ds
(λx2(s)ũ(s)) ds.

Then, by virtue of (2.2), (3.2), and (3.7) (see Lemma 3.2), we have for t ∈ δi∣∣∣ 1
α

(λx2(t))2[wh(t)− x2(t)]− 1

α
(λξhi )2[wh(τi)− ξhi ]

∣∣∣ ≤ (3.25)
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≤ C5

α

{ τi+1∫
τi

|ẇh(s)| ds+ h+ δ
}
≤ C6

h+ δ

α
.

In view of (3.16), we derive the inequality

∣∣∣ t∫
0

e
− 1
α

t∫
s

(λx2(v))
2dv
λ
d

ds
(x2(s)ũ(s)) ds

∣∣∣ ≤ C7α.

Combining together the last inequality with (3.18), (3.23)–(3.25), and (3.6), we obtain
for t ∈ δi ∣∣∣∣− 1

α
λ2[wh(τi)− x2(τi)]− λx2(t)ũ(t)

∣∣∣∣ ≤
≤ %(h, δ, α) + C6

h+ δ

α
+ C7α ≤ C8

(
α+ ω(δ) +

δ + h

α

)
.

(3.26)

Note that for t = δβ (β ∈ (0, 1)) the inequality

∣∣∣λe− 1
α

t∫
0

(λx2(v))
2dv
x2(0)ũ(0)

∣∣∣ ≤ α|λx1(0)x2(0)|
bδβ

(3.27)

takes place. The lemma follows from (3.26) since, in virtue of (3.27), the following
inequalities

|uh(t)− ũ(t)| ≤ C9δ
β for t ∈ [0, δβ ],

|uh(t)− ũ(t)| ≤ C8

(
α+ ω(δ) +

δ + h

α

)
+ C10α(h)δ−β(h) for t ∈ (δβ , ϑ]

are valid. The lemma is proved.

The next statement follows from Lemma 3.3.

Theorem 3.4. Let the conditions of Lemma 3.3 be fulfilled. Then convergence of
(2.6) takes place.

We consider the problem of reconstructing the coordinate x1(·) through the mea-
surements of the coordinate x2(·). Similarly, we can solve the “inverse” problem,
namely, the problem of reconstructing the coordinate x2(·) through the measurements
of the coordinate x1(·).

Actually, let the values λ, ν and µ, as well as the function k(t) be known. The
function γ(t) is unknown. It is only known that this function is continuous and satisfies
the condition −∞ < a ≤ γ(t) ≤ b < +∞. Assume that the part of the current state,
namely, the coordinate x1(τi) is measured at the time moments τi. The measurement
results ξh1i ∈ R satisfy the inequalities

|x1(τi)− ξh1i| ≤ h.

It is required to design an algorithm for reconstructing the coordinate x2(·).
Let the following condition be fulfilled.
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Condition 3.5. a) The function k(·) is differentiable and

vrai sup
t∈T
|k̇(t)| ≤ c = const > 0.

b) mins∈T (k(s) + λx1(s))2 > 0.

As a model M , we take a linear system described by the following scalar equation

ẇh1 (t) = f∗(ξ
h
1i) + (k(τi) + λξh1i)v

h
1 (t) for a.a. t ∈ δi = [τi, τi+1),

i ∈ [0 : m− 1], τi = τi,h, m = mh, with the initial state

wh1 (0) = x1(0).

Here, f∗(x1) = −νx1. The control vh1 (·) in the model is calculated by the rule

vh1 (t) = vh1i = arg min{2(k(τi) + λξh1i)(w
h
1 (τi)− ξh1i)v + αv2 : v ∈ R} =

= − 1

α
(k(τi) + λξh1i)[w

h
1 (τi)− ξh1i], t ∈ δi.

Similarly to Lemma 3.3, the next lemma can be proved.

Lemma 3.6. Let the conditions of Lemma 3.3 and the following relation

uh(t) =

{
x2(0), t ∈ [0, δβ(h)),

−vh1 (t), t ∈ [δβ(h), ϑ]

be fulfilled. Then the inequality

sup
t∈T
|uh(t)− x2(t)| ≤

≤ C(α(h) + (h+ δ(h))α−1(h) + ω(δ(h)) + α(h)δ−β(h))

is valid.

The latest lemma implies the following theorem.

Theorem 3.7. Let the conditions of Theorem 3.4 be fulfilled. Then the convergence

sup
t∈T
|uh(t)− x2(t)| → 0 as h→ 0

takes place.

4. EXAMPLE

The algorithm was tested with the use of a model example. System (2.1) was con-
sidered on the time interval T = [0, 2], x1, x2 ∈ R. The initial state was of the form
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x1(0) = 1, x2(0) = 2. We took the model with the initial state w(0) = 2 and the
controls according to (3.3) and (3.4). We used the following parameters:

ϑ = 2, ν = 1, µ = 1, λ = 3, γ(t) = sin t+ 1.5, k(t) = 0.5.

The computation results are shown in Figures 1 and 2. The dashed line represents
the coordinate x1(·); the solid line, the control uh(·).

The results of numerical experiments show that the uniform convergence of uh(·)
to x1(·) takes place under decreasing the parameters h, α = α(h), and δ = δ(h)
or one of them. In order not to lengthen the paper, we presented only two figures
corresponding to different values of the partition step δ.

x1, u
h

t

Fig. 1. h = 0.001, α = 0.1, δ = 0.1

x1, u
h

t

Fig. 2. h = 0.001, α = 0.1, δ = 0.001



268 Marina Blizorukova, Alexander Kuklin, and Vyacheslav Maksimov

5. CONCLUSION

In this paper, the algorithm for reconstructing characteristics of a system of nonlinear
differential equations of the second order was designed. The algorithm is based on the
theory of stable dynamical inversion. It is stable with respect to informational noises
and computational errors. The performance of the algorithm is illustrated by a model
example.
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