PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Isolation and screening of bacteria with ability to decolorize selected synthetic dyes - preliminary results

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Commonly used synthetic dyes cause serious problems with their efficient removal from sewage. The bioaugmentation of sewage treatment systems with highly decolorizing bacteria may be a solution. The aim of the study was the screening of bacteria with high ability to remove synthetic dyes (brilliant green (BG), crystal violet (CV), erythrosine (Er). The bacteria were isolated from municipal sewage, compost and rotten beech wood. Mineral and nutrient solid growth media supplemented with dyes (BG or EB) at a concentration 0.1 gL-1 were used. At second stage of screening the liquid nutrient broth supplemented with one of dye (BG, CV or Er at concentration 0.1 gL-1) was used. The contents of dyes in samples (after 96 h) were measured spectrophotometrically. The largest number of decolorizers were obtained from wastewater, then from compost and the rotten wood. In the case of BG and CV even small differences in the structure of the molecules affect the results of dyes removal. The structurally simpler BG was definitely better removed than CV. The results of the removal of Er were worse than BG but better than CV. Bacteria isolated at mineral medium removed dyes with higher efficiency.
Rocznik
Strony
75--86
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Assoc. Prof.; Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
  • Assoc. Prof.; Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
  • The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, ul. C. K. Norwida 25, 50-375 Wrocław, Poland
Bibliografia
  • [1] Azmi W., Sani R.K., Banerjee U.C. (1998). Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 22, 185-191.
  • [2] Kuhad R.Ch., Gupta R., Khasa Y.P.: Microbial decolorization of colored industrial effluents, [in] Satyanarayana T., Johri B. N., Prakash A. (eds.) (2012). Micoroorganisms in Environmental Management - Microbes and Environment. Springer, ch. 35, 787-815.
  • [3] Rauf M.A., Ashraf S.S.: Survey of recent trends in biochemically assisted degradation of dyes. Review. Chemical Engineering Journal, 209. 520-530.
  • [4] Chequer F.M.D., Dorta D.J., de Oliveira D.P. (2011). Azo dyes and their metabolites: does the discharge of azo dye into water bodies represent human and ecological risks? [in] Hauser P. (ed.): Advances in treating textile effluent. INTECH, ch.2. 28-48.
  • [5] Saratale R.G., Saratale G.D., Chang J.S., Govindwar S.P. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138-157.
  • [6] SolisM., Solis A., Perez H.I.,Manjarrez N., FloresM. (2012).Microbial decolouration of azo dyes: A review. Process Biochemistry, 47. 1723-1748.
  • [7] Wang J., Qiao M., Wei K., Ding J., Liu Z., Zhang K.Q., Huang X. (2011). Decolorizing activity of malachite green and its mechanism involved in dye biodegradation by Achromobacter xylosoxidans MG1. J. Mol Microbiol Biotechnol, 20, 220-227.
  • [8] Wu J., Jung B.-G., Kim K.-S., Lee Y.-C., Sung N.-C. (2009). Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. Journal of Environmental Sciences, 21, 960-964.
  • [9] Wu Y., Xiao X., Xu C., Cao D., Du D. Decolorization and detoxification of sulfonated triphenylmethane dye aniline blue by Shewanella oneidensis MR-1 under anaerobic conditions. Appl Microbiol Biotechnol, published online: 11 October 2012. doi.org/10.1007/s00253-012-4476-3.
  • [10] Younes S.B., Bouallagui Z., Sayadi S. (2012). Catalytic behavior and detoxifyind ability of an atypical homotrimetric laccase from the thermophilic strain Scytalidium thermophilum on selected azo and triarylmethane dyes. Journal of Molecular Catalysis B: Enzymatic, 79, 41-48.
  • [11] Clark M. (2011). Handbook of textile and industrial dyeing. Volume 2: Applications of dyes. Woodhead Publishing Limited, Cambridge.
  • [12] Gasik A., Mitek M. (2007). Syntetyczne barwniki organiczne w technologii żywności. (Synthetic organic dyes in food technology). Przemysł spożywczy, 8. 48-53.
  • [13] Hunger K. (2003). Industrial Dyes - Chemistry, Properties, Applications. WILEY-VCH, Darmstadt.
  • [14] Kim H., Kim Y., Park H.-Y., Lee Y. S., Kwak S.-N., Jung W. Y., Lee S.-G., Kim D., Lee Y.-C., Oh T.-K. (2008). Structural insight into bioremediation of triphenylmethane dyes by Citrobacter sp. triphenylmethane reductase. The Journal of Bioogical Chemistry, 283(46), 31981-31990.
  • [15] Rehman R., Mahmud T., Irum M. (2015). Brilliant green dye elimination from water using Psidium guajava leaves and Solanum tuberosum peels as adsorbents in environmentally benign way. Journal of Chemistry, 2015, Article ID 126036. 1-8.
  • [16] Robinson T., McMullan G., Marchant R., Nigam P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247-255.
  • [17] Sharma, D.K., Saini, H.S., Singh, M., Chimni, S.S., Chandha, B.S. (2004). Isolation and characterization of microorganisms capable of decolorizing various triphenylmethane dyes. Journal of Basic Microbiology, 44(1), 59-65.
  • [18] Ghaly A.E., Ananthashankar R., Alhattab M., Ramakrishnan V.V. (2014). Production, Characterization and Treatment of Textile Effluents: A Critical Review. J Chem Eng Process Technol, 5(1), 1-19.
  • [19] Kagalkar A.N., Jagtap U.B., Jadhav J.P., Govindwar S.P., Bapat V.A. (2010). Studies on phytoremediation potentiality of Typhonium flagelliforme for the degradation of Brilliant Blue R. Planta, 232, 271-285.
  • [20] Przystaś W., Zabłocka-Godlewska E., Grabińska-Sota E. (2013). Effectiveness of Dyes Removal by Mixed Fungal Cultures and Toxicity of Their Metabolites. Water Air Soil Pollut., 224(5), 1534-1543.
  • [21] Sharma P., Singh L., Dilbaghi N. (2009). Biodegradation of Orange II dye by Phanerochaete chrysosporium in simulated wastewater. J. Sci. Ind. Res., 68. 157-161.
  • [22] Van der Zee F.P., Villaverde S. (2005). Combined anaerobic-aerobic treatment of azo dyes - a short review of bioreactor studies. Water Research, 39. 1425-1440.
  • [23] Cui D., Li G., Zhao D., Gu X., Wang C., Zhao M. (2012).Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions. Journal of Hazardous Materials, 221-222, 185-192.
  • [24] Kandelbauer A., Guebitz G.M. (2005). Bioremediation for the decolorization of textile dyes - a review, [in] Lichtfouse E., Schwarzbauer J., Didier R. (eds): Environmental Chemistry. Green Chemistry and Pollutants in Ecosystems. Springer. 3, ch.26, 269-288.
  • [25] Sani R.K., Banerjee U.C. (1999). Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme andMicrobial Technology, 24, 433-437.
  • [26] Saratale R.G., Saratale G.D., Kalyani D.C., Chang J.S., Govindwar S.P. (2009). Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol, 100, 2493-2500.
  • [27] Zabłocka-Godlewska E., PrzystaśW., Grabińska-Sota E. (2014). Decolourisation of different dyes by two Pseudomonas strains under various growth conditions. Water Air Soil Pollut. 225, 1846-1859.
  • [28] Zabłocka-Godlewska E., PrzystaśW., Grabińska-Sota E. (2018). Possibilities of obtaining from highly polluted environments: new bacterial strains with a significant decolorization potential of different synthetic dyes. Water Air and Soil Pollut. 229(176), 1-13. Doi.org/10.1007/s11270-018-3829-7.
  • [29] https://www.sigmaaldrich.com/poland.html
  • [30] Tony B.D., Goyal D., Khanna S. (2009). Decolorization of textile azo dyes by aerobic bacterial consortium. Int Biodeter Biodegr, 63, 462-469.
  • [31] Jang M.S., Lee Y.M., Kim Ch.H., Lee J.H., Kang D.W., Kim S.J., et al. (2005). Triphenylmethane reductase from Citrobacter sp. Strain KCTC 18061P: purification, characterization, gene cloning, and overexpression of functional protein in Escherichia coli. Applied and Environmental Microbiology, 71(12), 7955-7960.
  • [32] Pearce C.I., Lloyd J.R., Guthrie J.T. (2003). The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 58, 179-196.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1503896-2091-49e6-a82f-83bbc9b449aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.