PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of highly sensitive temperature sensor based on photonic band gap structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a novel microstrip resonator technique for temperature sensing is proposed, designed, and implemented using a hybrid planar microstrip line and photonic band gap (PBG) structure. To implement the PBG structure of the microstrip line, a microfluidic channel with periodic form is introduced into the substrate and filled with water. The operation principle of the sensor is based on a frequency shift due to the variation in the center of the band gap, which in turn changes with the variation of the permittivity of water, which relates to the temperature. The different empirical expressions describing the complex permittivity with the resonant frequency were carried out. The proposed sensor is simple in design and low cost, which may be applied in different applications at the industrial.
Czasopismo
Rocznik
Strony
41--49
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • University Frères Mentouri Constantine 1, 325 Route Ain El Bey, 25017 Constantine, Algeria
  • University Frères Mentouri Constantine 1, 325 Route Ain El Bey, 25017 Constantine, Algeria
  • University Frères Mentouri Constantine 1, 325 Route Ain El Bey, 25017 Constantine, Algeria
  • University Frères Mentouri Constantine 1, 325 Route Ain El Bey, 25017 Constantine, Algeria
Bibliografia
  • [1] CHILDS P.R.N., GREENWOOD J.R., LONG C.A., Review of temperature measurement, Review of Scientific Instruments 71(8), 2000: 2959-2978. https://doi.org/10.1063/1.1305516
  • [2] LEE B., Review of the present status of optical fiber sensors, Optical Fiber Technology 9(2), 2003, 57-79. https://doi.org/10.1016/S1068-5200(02)00527-8
  • [3] ALLISON S.W., GILLIES G.T., Remote thermometry with thermographic phosphors: Instrumentation and applications, Review of Scientific Instruments 68(7), 1997: 2615-2650. https://doi.org/10.1063/1.1148174
  • [4] ARAMPATZIS TH., LYGEROS J., MANESIS S., A survey of applications of wireless sensors and wireless sensor networks, [In] Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, IEEE, 2005: 719-724. https://doi.org/10.1109/.2005.1467103
  • [5] SARDINI E., SERPELLONI M., Wireless measurement electronics for passive temperature sensor, IEEE Transactions on Instrumentation and Measurement 61(9), 2012, 2354-2361. https://doi.org/10.1109/TIM.2012.2199189
  • [6] BOUAZIZ S., CHEBILA F., TRAILLE A., PONS P., AUBERT H., TENTZERIS M.M., Novel microfluidic structures for wireless passive temperature telemetry medical systems using radar interrogation techniques in Ka-band, IEEE Antennas and Wireless Propagation Letters 11, 2012: 1706-1709. https://doi.org/10.1109/LAWP.2013.2242272
  • [7] GIRBAU D., RAMOS A., LAZARO A., RIMA S., VILLARINO R., Passive wireless temperature sensor based on time-coded UWB chipless RFID tags, IEEE Transactions on Microwave Theory and Techniques 60(11), 2012: 3623-3632. https://doi.org/10.1109/TMTT.2012.2213838
  • [8] MAURYA S., YADAVA R.L., YADAV R.K., Effect of temperature variation on microstrip patch antenna and temperature compensation technique, International Journal of Wireless Communications and Mobile Computing 1(1), 2013: 35-40. https://doi.org/10.11648/j.wcmc.20130101.16
  • [9] SANDERS J.W., YAO J., HUANG H., Microstrip patch antenna temperature sensor, IEEE Sensors Journal 15(9), 2015: 5312-5319. https://doi.org/10.1109/JSEN.2015.2437884
  • [10] YAO J., MBANYA TCHAFA F., JAIN A., TJUATJA S., HUANG H., Far-field interrogation of microstrip patch antenna for temperature sensing without electronics, IEEE Sensors Journal 16(19), 2016: 7053-7060. https://doi.org/10.1109/JSEN.2016.2597739
  • [11] JOANNOPOULOS J.D., MEADE R.D., WINN J.N., Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.
  • [12] QIAN Y., RADISIC V., ITOH T., Simulation and experiment of photonic band-gap structures for microstrip circuits, [In] Proceedings of 1997 Asia-Pacific Microwave Conference, Vol. 2, Hong Kong, China, 1997: 585-588. https://doi.org/10.1109/APMC.1997.654609
  • [13] RADISIC V., QIAN Y., COCCIOLI R., ITOH T., Novel 2-D photonic bandgap structure for microstrip lines, IEEE Microwave and Guided Wave Letters 8(2), 1998: 69-71. https://doi.org/10.1109/75.658644
  • [14] MAYSTRE D., Electromagnetic study of photonic band gaps, Pure and Applied Optics: Journal of the European Optical Society Part A 3(6), 1994: 975-993. https://doi.org/10.1088/0963-9659/3/6/005
  • [15] GRINE F., AMMARI H., BENHABILES M.T., RIABI M.L., DJERAFI T., Microwave sensor based on microstrip line photonic band gap (PBG) structure, IEEE Sensors Journal 21(17), 2021: 18443-18450. https://doi.org/10.1109/JSEN.2021.3090327
  • [16] YANG F.R., QIAN Y., COCCIOLI R., ITOH T., Analysis and application of photonic band-gap (PBG) structures for microwave circuits, Electromagnetics 19(3), 1999: 241-254. https://doi.org/10.1080/02726349908908642
  • [17] SONDERGAARD T., BROENG J., BJARKLEV A., DRIDI K., BARKOU S.E., Suppression of spontaneous emission for a two-dimensional honeycomb photonic bandgap structure estimated using a new effectiveindex model, IEEE Journal of Quantum Electronics 34(12), 1998: 2308-2313. https://doi.org/10.1109/3.736097
  • [18] KAATZE U., Complex permittivity of water as a function of frequency and temperature, Journal of Chemical & Engineering Data 34(4), 1989: 371-374. https://doi.org/10.1021/je00058a001
  • [19] ANTONOPPOLOS G., BENABID F., BIRKS T.A., BIRD D.M., BOUWMANS G., KNIGHT J.C., RUSSELL P.ST.J., Experimental demonstration of refractive index scaling in photonic bandgap fibers, [In] Conference on Lasers and Electro-Optics, 2004. (CLEO), Vol. 2, San Francisco, CA, USA, 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c14e3d69-ca61-4d12-9e09-d54e59fd93d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.