PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electron work functions of (h k l)-surfaces of W, Re, and Cu crystals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Work function (WF) and some physicochemical data for several most prominent crystal planes of three metals of typical structures are calculated within the linear approximation employing the surface dipole and 2D gas models. “Composite” crystal of a homogeneous bulk phase and a thick surface composed of eight (h k l)-oriented facets with different unsaturated bonds is treated as a nine-phase nine-component system with two degrees of freedom. It contains the two-dimensional metal-lattice plasma of free electrons and the immobile atom-core network. For twenty four (h k l) surfaces, the WF and dipole barrier term, chemical and electrostatic potential levels, electron charge densities, surface dipole fields, and other parameters are calculated and tabularized. WF values obtained from the thermodynamics based formula are compared to the ones obtained from the quantum mechanics based formula, which shows good agreement with experiment and also reveals a specific deviation in the case of field emission method for the most packed plane. A set of accurate face dependent data can be of interest to electronics and materials science workers.
Wydawca
Rocznik
Strony
225--234
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Institute of Experimental Physics, University of Wroclaw, Pl. Maxa Borna 9, 50-204 Wroclaw, Poland
autor
  • Institute of Experimental Physics, University of Wroclaw, Pl. Maxa Borna 9, 50-204 Wroclaw, Poland
autor
  • Institute of Experimental Physics, University of Wroclaw, Pl. Maxa Borna 9, 50-204 Wroclaw, Poland
Bibliografia
  • [1] HERRING C., NICHOLS M.H., Rev. Mod. Phys., 21 (1949), 185.
  • [2] KIEJNA A., WOJCIECHOWSKI K.F., Metal Surface Electron Physics, Pergamon, Oxford, 1996.
  • [3] HALAS S., Mater. Sci.-Poland, 24 (2006), 951.
  • [4] BARDEEN J., Phys. Rev., 49 (1936), 653.
  • [5] SMOLUCHOWSKI R., Phys. Rev., 60 (1941), 661.
  • [6] LANG N.D., KOHN W., Phys. Rev. B, 1 (1970), 4555.
  • [7] LANG N.D., KOHN W., Phys. Rev. B, 3 (1971), 1215.
  • [8] BOUDREAUX D.S., Phys. Rev. B, 1 (1970), 4552.
  • [9] HOHENBERG P., KOHN W., Phys. Rev., 136, B864 (1964).
  • [10] METHFESSEL M., HENNIG D., SCHEFFLER M., Phys. Rev. B, 46 (1992), 4816.
  • [11] KNAPP A.G., Surface Sci., 34 (1973), 289.
  • [12] WOJCIECHOWSKI K.F., KIEJNA A., BOGDANÓW H., Modern Phys. Lett. B, 13 (1999), 1081.
  • [13] KIEJNA A., Phys. Rev. B, 47 (1993), 7361.
  • [14] HALAS S., DURAKIEWICZ T., J. Phys.-Condens. Mater., 10 (1998), 10815.
  • [15] DURAKIEWICZ T., HALAS S., ARKO A., JOYCE J.J., MOORE D.P., Phys. Rev. B, 64 (2001), 045101.
  • [16] BRODIE I., CHOW S.H., YUAN H., Surface Sci., 625 (2014), 112.
  • [17] BRODIE I., Phys. Rev. B, 51 (1995), 13660.
  • [18] BARIBEAU J-M., LOPEZ J., LE BOSSE J.-C., J. Phys. C-Solid State Phys., 18 (1985), 3083.
  • [19] SURMA S.A., Phys. Status Solidi A, 183 (2001), 307.
  • [20] SURMA S.A., BRONA J., CISZEWSKI A., Mater. Sci.-Poland, 33 (2015), 430.
  • [21] MACKENZIE J.K., MOORE A.J.W., NICHOLAS J.F., J. Phys. Chem. Solids, 23 (1962), 185.
  • [22] ARTSIMOVICH L.A., Elementarnaya fizika plazmy, Atomizdat, Moscow, 1969.
  • [23] KNOR Z., MÜLLER E.W., Surface Sci., 10 (1968), 21.
  • [24] GUGGENHEIM E.A., Thermodynamics, North-Holland Elsevier, Amsterdam, 1993.
  • [25] LANDAU L.D., LIFSHITS E.M., Statistical Physics, Pergamon, London, 1980.
  • [26] KORYTA J., DVORAK J., BOHACKOVA V., Lehrbuch der Elektrochemie, Springer, Wien/NewYork, 1975.
  • [27] WIGNER E.P., BARDEEN J., Phys. Rev., 48 (1935), 84.
  • [28] SCHULTE F.K., J. Phys. C-Solid State Phys. 7 (1974), L370.
  • [29] TAVARES F W., PRAUSNITZ J.M., Colloid. Polym. Sci., 282 (2004), 620.
  • [30] RADOŃ T., Acta Phys. Polon. A, 118, (2010), 596.
  • [31] CHEN Y., ZHAO C., HUANG F., ZHAN R., DENG S., XU N., CHEN J., Sci. Rep., 6 (2016), 21270.
  • [32] WOJCIECHOWSKI K.F., Phys. Rev. B, 60 (1999), 9202.
  • [33] HERMAN M.H., TSONG T.T., Phys. Rev. Lett., 48 (1982), 1029.
  • [34] TOMASZEWSKI P.E., Ferroelectrics, 375 (2008), 74.
  • [35] PLUMMER E.W., RHODIN T.N., J. Chem. Phys., 49 (1968), 3479.
  • [36] SMITH J.R., Phys. Rev. Lett., 25 (1970), 1023.
  • [37] YOUNG R.D., CLARK H.E., Phys. Rev. Lett., 17 (1966), 351.
  • [38] SKRIVER H.L., ROSENGAARD N.M., Phys. Rev. B, 46 (1992), 7157.
  • [39] DRECHSLER M., The Equilibrium Shape of Metal Crystals, in: VU T.B. (Ed.), Surface Mobilities on Solid Materials, Plenum Press, New York/London, 1983, pp. 405-457.
  • [40] KERN R., The Equilibrium Form of a Crystal, in: SUNAGAWA I. (Ed.), Morphology of Crystals, Terrapub, Tokyo, 1987, pp. 77-206.
  • [41] MUELLER E.W., TSONG T.T., Field Ion Microscopy – Principles and Applications, American Elsevier, New York, 1969, p. 70.
  • [42] LI D.Y., LI W., Appl. Phys. Lett., 79 (2001), 4337.
  • [43] HAAS G.A., THOMAS R.E., J. Appl. Phys., 48 (1977), 86.
  • [44] ROWE J.E., SMITH N.V., Phys. Rev. B, 10 (1974), 3207.
  • [45] GARTLAND P.O., BERGE S., SLAGSVOLD B.J., Phys. Rev. Lett., 28 (1972), 738.
  • [46] DELCHAR T.A., Surf. Sci., 27 (1971), 11.
  • [47] MICHAELSON H.B., J. Appl. Phys., 48 (1977), 4729.
  • [48] FOMENKO V.S., PODCHERNYAEVA I.A., Emissionnye i Adsorbtsionnye Svoistva Veshchestv i Materialov, Atomizdat, Moscow, 1975.
  • [49] HAAS G.A., THOMAS R.E., J. Appl. Phys., 40 (1969), 3919.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1436c9b-7eae-4bd4-9ddd-9babb84d0614
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.