PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation study of hydrodynamic cavitation in the orifice flow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrodynamic cavitation is a phenomenon that can be used in the water treatment process. For this purpose, venturis or orifices varying in geometry are used. Studying this phenomenon under experimental conditions is challenging due to its high dynamics and difficulties in measuring and observing the phase transition of the liquid. For this reason, the CFD method was used to study the phenomenon of hydrodynamic cavitation occurring in water flow through the orifice and then analyze flow parameters for different boundary conditions. The research was performed for four different orifice geometries and two defined fluid pressure values at the inlet, based on a computational 2D model of the research object created in Ansys Fluent software. As a result of the numerical simulation, the distribution of fluid velocity and pressure and volume fraction of the gas phase were obtained. A qualitative and quantitative analysis of the phenomenon of hydrodynamic cavitation under the considered flow conditions was conducted for the defined orifice geometries. The largest cavitation zone and thus the largest volume fraction of the gas phase was obtained for the orifice diameter of 2 mm with a sharp increase in diameter. However, the geometry with a linear change in diameter provided the largest volume fraction of the gas phase per power unit.
Słowa kluczowe
Rocznik
Strony
31--41
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Thermodynamics, Fluid Mechanics, and Aircraft Propulsion Systems, Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Thermodynamics, Fluid Mechanics, and Aircraft Propulsion Systems, Lublin
Bibliografia
  • [1] Brennen, C. E. (2011). Hydrodynamics of pumps. Cambridge University Press.
  • [2] Capocelli, M., Musmarra, D., Prisciandaro, M., & Lancia, A. (2014). Chemical effect of hydrodynamic cavitation: simulation and experimental comparison. AIChE Journal, 60(7), 2566–2572. https://doi.org/10.1002/aic.14472
  • [3] Ding, H., Visser, F. C., Jiang, Y., & Furmanczyk, M. (2011). Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications. Journal of fluids engineering, 133(1), 011101. https://doi.org/10.1115/1.4003196
  • [4] Franc, J. P. (2006). Physics and control of cavitation. Grenoble Univ (France).
  • [5] Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation–a review. Chemical Engineering Journal, 338, 599–627. https://doi.org/10.1016/j.cej.2018.01.049
  • [6] Gogate, P. R., & Pandit, A. B. (2000). Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE Journal, 46(8), 1641–1649. https://doi.org/10.1002/aic.690460815
  • [7] Gogate, P. R., Tayal, R. K., & Pandit, A. B. (2006). Cavitation: a technology on the horizon. Current science, 91(1), 35–46.
  • [8] Gogate, P. R., Thanekar, P. D., & Oke, A. P. (2020). Strategies to improve biological oxidation of real wastewater using cavitation based pre-treatment approaches. Ultrasonics Sonochemistry, 64, 105016. https://doi.org/10.1016/j.ultsonch.2020.105016
  • [9] Iannetti, A., Stickland, M. T., & Dempster, W. M. (2016). A CFD and experimental study on cavitation in positive displacement pumps: Benefits and drawbacks of the ‘full’cavitation model. Engineering Applications of Computational Fluid Mechanics, 10(1), 57–71. https://doi.org/10.1080/19942060.2015.1110535
  • [10] Kunz, R. F., Boger, D. A., Chyczewski, T. S., Stinebring, D., Gibeling, H., & Govindan, T. (1999). Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In Proceedings of the 3rd ASME-JSME Joint Fluids Engineering Conference. American Society of Mechanical Engineers.
  • [11] Menter, F. (1993). Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasmadynamics, and lasers conference (p. 2906).
  • [12] Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598–1605.
  • [13] Moholkar, V. S., & Pandit, A. B. (1997). Bubble behavior in hydrodynamic cavitation: effect of turbulence. AIChE Journal, 43(6), 1641–1648.
  • [14] Omelyanyuk, M., Ukolov, A., Pakhlyan, I., Bukharin, N., & El Hassan, M. (2022). Experimental and Numerical Study of Cavitation Number Limitations for Hydrodynamic Cavitation Inception Prediction. Fluids, 7(6), 198. https://doi.org/10.3390/fluids7060198
  • [15] Patil, P. B., Bhandari, V. M., & Ranade, V. V. (2021). Improving efficiency for removal of ammoniacal nitrogen from wastewaters using hydrodynamic cavitation. Ultrasonics Sonochemistry, 70, 105306. https://doi.org/10.1016/j.ultsonch.2020.105306
  • [16] Salvatore, F., Streckwall, H., & Van Terwisga, T. (2009). Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop. In Proceedings of the first international symposium on marine propulsors, Trondheim, Norway (pp. 22–24).
  • [17] Sauer, J., & Schnerr, G. H. (2001). Development of a new cavitation model based on bubble dynamics. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 81(S3 S3), 561–562. https://doi.org/10.1002/zamm.20010811559
  • [18] Schnerr, G. H., & Sauer, J. (2001). Physical and numerical modeling of unsteady cavitation dynamics. In Fourth international conference on multi-phase flow (Vol. 1). ICMF New Orleans.
  • [19] Shi, H., Li, M., Nikrityuk, P., & Liu, Q. (2019). Experimental and numerical study of cavitation flows in venturi tubes: From CFD to an empirical model. Chemical Engineering Science, 207, 672–687.
  • [20] Singhal, A. K., Athavale, M. M., Li, H., & Jiang, Y. (2002). Mathematical basis and validation of the full cavitation model. J. Fluids Eng., 124(3), 617–624. https://doi.org/10.1115/1.1486223
  • [21] Subhas, S., Saji, V. F., Ramakrishna, S., & Das, H. N. (2012). CFD analysis of a propeller flow and cavitation. International Journal of Computer Applications, 55(16), 26–33.
  • [22] Tao, Y., Cai, J., Huai, X., Liu, B., & Guo, Z. (2016). Application of hydrodynamic cavitation to wastewater treatment. Chemical engineering & technology, 39(8), 1363–1376. https://doi.org/10.1002/ceat.201500362
  • [23] Wang, B., Su, H., & Zhang, B. (2021). Hydrodynamic cavitation as a promising route for wastewater treatment–A review. Chemical Engineering Journal, 412, 128685. https://doi.org/10.1016/j.cej.2021.128685
  • [24] Zheng, X. B., Liu, L. L., Guo, P. C., Hong, F., & Luo, X. Q. (2018, July). Improved Schnerr-Sauer cavitation model for unsteady cavitating flow on NACA66. IOP Conference Series: Earth and Environmental Science, 163(1), 012020).
  • [25] Zwart, P. J., Gerber, A. G., & Belamri, T. (2004, May). A two-phase flow model for predicting cavitation dynamics. In Fifth international conference on multi-phase flow, Yokohama, Japan ( No. 152).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c13922e3-d891-41ae-a13e-72887868cbf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.