PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Turbulent mixing and dispersion mechanisms over flexible and dense vegetation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates flow turbulence and dispersion processes in the presence of flexible and dense vegetation on the bed. The turbulent dispersion coefficients and the terms of the turbulent kinetic energy equation are determined by using data collected in a straight laboratory channel with living vegetation on the bed. Results show that the turbulent integral lengths assume an order of magnitude comparable to the stems’ characteristic dimension independently by the direction and the turbulence assumes an isotropic behavior. The coefficients of dispersion have a trend similar to that of the turbulent lengths and assume low values in the longitudinal, transversal and vertical directions. Results also show that, in the mixing layer, the shear and wake turbulence production terms balance the dissipation; the turbulent diffusion term also assumes low values and its sign varies along the vertical indicating a transport of turbulent energy both from the vegetation to the free surface and from the free surface to vegetation.
Czasopismo
Rocznik
Strony
961--970
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
  • Department of Engineering, Polytechnic School, University of Palermo, Palermo, Italy
Bibliografia
  • 1. Ackerman JD, Okumbo A (1993) Reduced mixing in a marine macrophyte canopy. Funct Ecol 7:305–309
  • 2. Antonia RA, Kim J, Browne LWB (1991) Some characteristics of small-scale turbulence in a turbulent duct flow. J Fluid Mech 233:368–388
  • 3. Brunet Y, Finnigan J, Raupach MR (1994) A wind tunnel study of air flow in waving wheat: single-point velocity statistics. Bound-Layer Meteorol 70:95–132
  • 4. Carollo FG, Ferro V, Termini D (2002) Flow velocity measurement in vegetated channels. J Hydraul Eng ASCE 128(7):664–673
  • 5. Carollo FG, Ferro V, Termini D (2005) Flow resistance law in channels with flexible submerged vegetation. J Hydraul Eng 131:554–564
  • 6. Carollo FG, Ferro V, Termini D (2006) Experimental investigation of flow characteristics in vegetated channels. International Congress Riverflow 2006—Lisbon (Portugal) 6–8 Sept
  • 7. Carollo FG, Ferro V, Termini D (2007) Analysing longitudinal turbulence intensity in vegetated channels. J Agric Eng 4:25–35
  • 8. Carollo FG, Ferro V, Termini D (2008) Determinazione del profilo di velocità e di intensità della turbolenza in canali vegetati, 31° Convegno Nazionale di Idraulica e Costruzioni Idrauliche, 9–12 Sept Perugia, Italy (in Italian)
  • 9. Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370
  • 10. Chandler M, Colarusso P, Buchsbaum R (1996) A study of eelgrass beds in Boston Harbor and Northern Massachusetts bays. Proj. Rep. Off. Res. Dev. US EPA, Narragansett, RI
  • 11. Coceal O, Dobre TG, Thomas TG, Belcher SE (2007) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589:375–409
  • 12. Corenblit D, Tabacchi E, Steiger J, Grunell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci Rev 84(1–2):56–86
  • 13. Cornacchia L, Licci S, Nepf H, Folkard A, van der Wal D, van de Koppel J, Puijalon S, Bouma TJ (2018) Turbulence-mediated facilitation of resource uptake in patchy stream macrophytes. Limnol Oceanog. https://doi.org/10.1002/lno.11070
  • 14. De Serio F, Ben Meftah M, Mossa M, Termini D (2018) Experimental investigation on dispersion mechanisms in rigid and flexible vegetated beds”. Adv Water Resour 120:98–113
  • 15. Defina A, Bixio AC (2005) Mean flow and turbulence in vegetated open channel flow. Water Resour Res 41:W07006. https://doi.org/10.1029/2004WR003475
  • 16. Ellenberg HH (2009) Vegetation ecology on Central Europe. Cambridge University Press, Cambridge
  • 17. Finnigan JJ, Shaw RH (2008) Double-averaging methodology and its application to turbulent flow in and above vegetation canopies. Acta Geophys 56(3):534–561
  • 18. Folkard AM (2011) Vegetated flows in their environmental context: a review. Eng Comput Mech ICE Proc 164(EM1):3–24
  • 19. Ghisalberti M, Nepf H (2006) The structure of the shear layer in flows over rigid and flexible canopies. Environ Fluid Mech 6:277–301
  • 20. Khaleghi E, Ramin AA (2005) Study of the effects of salinity on growth and development of lawns (Lolium perenne L., Festuca arundinacea and Cynodon dactylon). JWSS 9(3):57–68
  • 21. Kubrak E, Kubrak J, Kiczko A (2015) Experimental Investigation of kinetic energy and momentum coefficients in regular channels with stiff and flexible elements simulating submerged vegetation. Acta Geophys 63(5):1405–1422
  • 22. Lawn CJ (1971) The determination of the rate of dissipation in turbulent pipe flow. J Fluid Mech 48:477–505
  • 23. Leuven RSEW, Ragas AMJ, Smits AJM, van der Velde G (2006) Living rivers: trends and challenges in science and management. Springer, Amsterdam
  • 24. Łoboda AM, Bialik RJ, Karpiński M, Przyborowski Ł (2019) Two simultaneously occurring Potamogeton species: similarities and differences in seasonal changes of biomechanical properties. Pol J Environ Stud 28(1):1–16
  • 25. Lumley JL (1965) Interpretation of time spectra measured in high-intensity shear flows. Phys Fluids 6:1056–1062
  • 26. Nepf H (1999) Drag, turbulence and diffusivity in flow through emergent vegetation. Water Resour Res 35(2):479–489
  • 27. Nepf HM (2012) Hydrodynamics of vegetated channels. J Hydraul Res 50(3):262–279
  • 28. Nepf H, Ghisalberti M (2008) Flow and transport in channels with submerged vegetation. Acta Geophys 56(3):753–777
  • 29. Nepf H, Vivoni E (2000) Flow structure in depth-limited, vegetated flow. J Geophys Res 105(C12):28547–28557
  • 30. Nepf H, Koch EW (1999) Vertical secondary flows in submersed plant-like arrays. Limnology and Oceanography 44(4):1072–1080
  • 31. Nepf H, Mugnier C, Zavistoski R (1997) The effects of vegetation on longitudinal dispersion. Estuar Coast Shelf Sci 44:675–684
  • 32. Nezu I, Nakagawa H (1993) Turbulence on open channel flows. A.A. Balkema Publishers, Rotterdam
  • 33. Nezu I, Sanjou M (2008) Turbulence structure and coherent motion in vegetated canopy open-channel flows. J Hydro-environ Res 2:62–90
  • 34. Nikora V, Goring DG, McEwan I, Griffiths G (2001) Spatially-averaged open-channel flow over a rough bed. J Hydraul Eng ASCE 127(2):123–133
  • 35. Nikora V, Lamed S, Nikora N, Debnath K, Cooper G, Reid M (2008) Hydraulic resistance due to aquatic vegetation in small streams: field study. J Hydraul Eng 134(9):1326–1332
  • 36. Okamoto T, Nezu I (2009) Turbulence structure and “Monami” phenomena in flexible vegetated open-channel flows. J Hydraul Res 47:798–810
  • 37. Oldham CE, Sturman JJ (2001) The effect of emergent vegetation on convective flushing in shallow wetlands: scaling and experiments. Limnol Oceanogr 46(6):1486–1493
  • 38. Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004) The effect of vegetation density on canopy sub-layer turbulence. Bound-Layer Meteorol 111:565–587
  • 39. Poggi D, Krug C, Katul GG (2009) Hydraulic resistance of submerged rigid vegetation derived from first-order closure models. Water Resour Res 45:W10442
  • 40. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge
  • 41. Raupach M, Shaw R (1982) Averaging procedures for flow within vegetation canopies. Bound-Layer Meteorol 22:79–90
  • 42. Raupach MR, Coppin PA, Legg BJ (1986) Experiments on scalar dispersion in a model plant canopy, part I: the turbulence structure. Bound-Layer Meteorol 35:21–52
  • 43. Ricardo AM, Koll K, Franca MJ, Schleiss A, Ferreira RML (2014) The terms of turbulent kinetic energy budget within random arrays of emergent cylinders. Water Resour Res 50:4131–4148
  • 44. Righetti M (2008) Flow analysis in a channel with flexible vegetation using double-averaging method. Acta Geophys 56:801
  • 45. Rutherford JC (1994) River mixing. Cambridge University Press, Cambridge
  • 46. Schnauder I, Sukhodolov AN (2012) Flow in a tightly curving meander bend: effects of seasonal changes in aquatic macrophyte cover. Earth Surf Proc Land 37(11):1142–1157
  • 47. Schultz RC, Colletti JP, Isenhart TM, Simpkins WW, Mize CW, Thompson ML (1995) Design and placement of a multi-species riparian buffer system. Agrofor Syst 29:201–226
  • 48. Shucksmith JD, Boxall JB, Guymer I (2011) Determining longitudinal dispersion coefficients for submerged vegetated flow. Water Resour Res 47(W10516):1–13
  • 49. Sivpure V, Devi TB, Kumar B (2015) Analysing turbulent characteristics of flow over submerged flexible vegetated channel. ISH J Hydraul Eng 21(3):265–275
  • 50. Sivpure V, Bebi TB, Kumar B (2016) Turbulent characteristics of densely flexible submerged vegetated channel. ISH J Hydraul Eng 22(2):220–226
  • 51. Stoesser T, Kim S, Diplas P (2010) Turbulent flow through idealized emergent vegetation. J Hydraul Eng 136(12):1003–1017
  • 52. Tanino Y, Nepf H (2008) Lateral dispersion in random cylinder arrays at high Reynolds number. J Fluid Mech 600:339–371
  • 53. Termini D (2013) Effect of vegetation on fluvial erosion processes: experimental analysis in a laboratory flume. Procedia Environ Sci 19:904–911
  • 54. Termini D (2015) Flexible vegetation behavior and effects on flow conveyance: experimental observations. Int J River Basin Manage 13(4):401–411
  • 55. Termini D (2016) Experimental analysis of the effect of vegetation on flow and bed shear stress distribution in high-curvature bends. Geomorphology 274:1–10
  • 56. Termini D, Di Leonardo A (2018) Turbulence structure and implications in exchange processes in high-amplitude vegetated meanders: experimental investigation. Adv Water Resour 120:114–127 (in press)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1352fd4-b79e-4683-aed2-ce4a987ef3db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.