PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

REE-bearing minerals in sediment-hosted stratiform pyrite mineralization zones of the Wiśniówka area (Holy Cross Mts., Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are two arsenical pyrite (As-FeS2mineralization zones cropping out in the Podwiśniówka and Wiśniówka Duża quarries where quartzites and quartzitic sandstones have been extracted for over a century. A large amount of pyrite in the Wiśniówka siliciclastics is unusual in the hard rock mining throughout the world. The pyritiferous beds contain a variety of REE-bearing minerals, including a crandallite series of aluminum-phosphate-sulfate (APS) minerals, e.g., predominant goyazite SrHAl3[(PO4)2(OH)6] with subordinate gorceixite BaHAl3[(PO4)2(OH)6] and very occasional crandallite CaHAl3[(PO4)2(OH)6]. By contrast, the other REE-phosphate minerals, e.g., xenotime YPO4, bur particularly monazite CePO4 occur in a lesser amount. Goyazite prevails somewhat in the Podwiśniówka beds whereas xenotime in the Wiśniówka Duża beds. Of the other REE-bearing minerals, bastnäsite REECO3(F,OH), florencite (REE)Al3(PO4)2(OH)6 and synchysite CaCe[CO3]2F occur in trace amounts. Interestingly, the quite common phosphate minerals, i.e., wavellite (Al.3[(OH,F)3|(PO4)2]×5H2O and variscite Al[PO4]×2H2O) are depleted in REEs with only Ce attaining 0.09 wt.% as documented by an electron-probe microanalysis. In contrast to quartzites/quartzitic sandstones, carbonaceous clayey-silty shales and bentonites/tuffites are distinctly enriched in REE-bearing minerals. This diversity is also mirrored in the mean total REE concentrations varying from 204 to 314 mg/kg, in clayey-silty shales and bentonites, attaining 457 mg/kg in some Podwiśniówka shale beds. Results of this and the previous petrographic, mineralogical and geochemical studies have indicated that REE-bearing minerals formed generally along with As-rich pyrite, nacrite/dickite and probably TiO2 polymorphs as a result of multiphase hydrothermal vent activity that took place in the Wiśniówka Late Cambrian sedimentary basin. This evidence is also backed up by the values of LREENASC/HREENASC (1.44–1.75) and Eu/EuNASC (1.24–1.30) coefficients in the clayey-silty shales. This positive Eu anomaly (31.20) points to the formation of REE-bearing minerals in a reducing environment.
Rocznik
Strony
art. no. 17
Opis fizyczny
Bibliogr. 67 poz., fot., tab., wykr.
Twórcy
  • Jan Kochanowski University, Świętokrzyska 7, 25-406 Kielce, Poland
  • Jan Kochanowski University, Świętokrzyska 7, 25-406 Kielce, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Acar, A., Sarý, A., Sonel, N., Aliyev, S., 2007. Source rock characterization and depositional environment of the late Cretaceous Haymana formation in the salt lake basin of Turkey. Energy Sources, Part A, 29: 277-291; https://doi.org/10.1080/009083190965758
  • 2. Atlas of Eh-pH diagrams: Intercomparison of thermodynamic databases, 2005. National Institute of Advanced Industrial Science and Technology. Research Center for Deep Geological Environments. Naoto TAKENO.
  • 3. Bau, M., Dulski, P., 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79: 37-55; https://doi.org/10.1016/0301-9268(95)00087-9
  • 4. Bełka, Z., Ahrendt, H., Franke, W., Buła, Z., Jachowicz, M., Wemmer, K., 1997. Accretion of pre-Variscan terranes in the Trans-European Suture Zone: evidence from K/Ar ages of detrital muscovites. Terra Nova, 970: 21-23.
  • 5. Boyce, A.J., Coleman, M.L., Russel, M.J., 1983. Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland. Nature, 306: 545-550; https://doi.org/10.1038/306545a0
  • 6. Brański, P., Mikulski, S.Z., 2016. Rare earth elements distribution in fine-grained deposits from the uppermost Triassic and Lower Jurassic of the Polish Basin: provenance and weathering in the source area. Geological Quarterly, 60 (2): 441-450; https://doi.org/10.7306/gq.1288
  • 7. Brookins, D.G., 1989. Aqueous geochemistry of rare earth elements. Review in Mineralogy, 8: 201-225; https://doi.org/10.1515/9781501509032-011
  • 8. Chakhmouradian, A.R., Wall, F., 2012. Rare earth elements: Minerals, mines, magnets (and more). Elements, 8: 333-340; https://doi.org/10.2113/gselements.8.5.333
  • 9. Courtois, C., Treuil, M., 1977. Distribution des terres rares et de quelques éléments en trace dans les sédiments récents des fosses de la Mer Rouge. Chemical Geology, 20: 57-72; https://doi.org/10.1016/0009-2541(77)90035-3
  • 10. Dia, A., Gruau, G., Olivie-Lauquet, G., Riou, C., Molenat, J., Curmi, P., 2000. The distribution of rare earth elements in groundwaters; assessing the role of source-rock composition, redox changes and colloidal particles. Geochimica et Cosmochimica Acta, 64: 4131-4151; https://doi.org/10.1016/S0016-7037(00)00494-4
  • 11. Dill, H.G., 2001. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth-Science Reviews, 53: 35-93; https://doi.org/10.1016/S0012-8252(00)00035-0
  • 12. Douville, E., Bienvenu, P., Charlou, J. L., Donval, J. P., Fouquet, Y., Appriou, P., Gamo, T., 1999. Yttrium and rare earth elements in flu ids from various dep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 55: 3553-3558; https://doi.org/10.1016/S0016-7037(99)00024-1
  • 13. Elderfield, H., Greaves, M.J., 1982. The rare earth elements in sea water. Nature 296: 214-219; https://doi.org/10.1038/296214a0
  • 14. Elderfield, H., Sholkovitz, E.R., 1987. Rare earth elements in the pore waters of reducing nearshore sediments. Earth and Planetary Science Letters, 82: 280-288; https://doi.org/10.1016/0012-821X(87)90202-0
  • 15. Emsbo, P., McLaughlin, P.I., Breit, G.N., du Bray, E.A., Koenig, A.E., 2015. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Research, 27: 776-785; https://doi.org/10.1016/j.gr.2014.10.008
  • 16. Gałuszka, A., Migaszewski, Z.M., Pelc, A., Trembaczowski, A., Dołęgowska, S., Michalik, A., 2020. Trace elements and stable sulfur isotopes in plants of acid mine drainage area: Implications for revegetation of degraded land. Journal of Environmental Sciences, 94, 128-136; https://doi.org/10.1016/j.jes.2020.03.041
  • 17. German, C.R., Klinkhammer, G.P., Edmond, J.M., Mitra, A., Elderfield, H., 1990. Hydrothermal scavenging of rare earth elements in the ocean. Nature, 345: 516-518; https://doi.org/10.1038/345516a0
  • 18. German, C.R., Hollday, B.P., Elderfield, H., 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55: 3553-3558; https://doi.org/10.1016/0016-7037(91)90055-A
  • 19. German, C.R., Hergt, J., Palmer, M.R., Edmond, J.M., 1999. Geochemistry of hydrothermal sediment core from the OBS vent field, 21°N East Pacific Rise. Chemical Geology, 155: 65-75; https://doi.org/10.1016/S0009-2541(98)00141-7
  • 20. Grawunder, A., Merten, D., Büchel, G., 2014. Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environmental Science and Pollution Research, 21: 6812-6823; https://doi.org/10.1007/s11356-013-2107-x
  • 21. Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.L., 1984. The “North American shale composite”; its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48: 2469-2482; https://doi.org/10.1016/0016-7037(84)90298-9
  • 22. Harlov, D.E., Procházka, V., Förster, H.-J., Matějka, D., 2008. Origin of monazite-xenotime-zircon-fluorapatite assemblages in the peraluminous Melechov granite massif, Czech Republic. Mineralogy and Petrology, 94: 9-26; https://doi.org/10.1007/s00710-008-0003-8
  • 23. Haskin, L.A., Wildeman, T.R., Haskin, M.A., 1968. An accurate procedure for the determination of the rare earths by neutron activation. Journal of Radioanalytical and Nuclear Chemistry, 1: 337-348; https://doi.org/10.1007/bf02513689
  • 24. Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99: 65-82; https://doi.org/10.1016/0009-2541(92)90031-Y
  • 25. Hetherington, C.J., Jercinovic, M.J., Williams, M.L., Mahan, K., 2008. Understanding geologic processes with xenotime: Composition, chronology, and a protocol for electron probe microanalysis. Chemical Geology, 254: 133-147; https://doi.org/10.1016/j.chemgeo.2008.05.020
  • 26. Jaworowski, K., Sikorska, M., 2006. Łysogóry Unit (Central Poland) versus East European Craton - application of sedimentological data from Cambrian siliciclastic association. Geological Quarterly, 50 (1): 77-88.
  • 27. Koç, S., Sarý, A., Çimen, O., 2016. Major and rare earth element contents in sedimentary rocks of Haymana formation, Ankara, Turkey. Energy Sources, part A: Recovery, Utilization, and Environmental Effects, 38: 1918-1928; https://doi.org/10.1080/15567036.2014.967418
  • 28. Kolker, A., Nordstrom, D.K., 2001. Occurrence and micro-distribution of arsenic in pyrite. USGS Workshop on Arsenic in the Environment, Feb. 21-22, 2001, Denver, CO. Extended abstracts: 1-3; http://wwwbrr.cr.usgs.gov/Arsenic/
  • 29. Konon, A., 2008. Tectonic subdivision of Poland: Holy Cross Mountains and adjacent areas (in Polish). Przegląd Geologiczny, 56: 921-926.
  • 30. Kositcin, N., McNaughton, N.J., Griffin, B.J., Fletcher, I.R., Groves, D.I., Rasmussen, B., 2003. Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochimica et Cosmochimica Acta, 67: 709-731; https://doi.org/10.1016/S0016-7037(02)01169-9
  • 31. Leybourne, M.I., Goodfellow, W.D., Boyle, D.R., Hall, G.M., 2000. Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn-Pb massive sulphide deposits. Applied Geochemistry, 15: 695-723; https://doi.org/10.1016/S0883-2927(99)00096-7
  • 32. Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V., Lewandowski, M., 2015. Is the Teysseyre- Tornquist Zone an ancient plate boundary of Baltica? Tectonics, 34: 2465-2477; https://doi.org/10.1002/2015TC003934
  • 33. Michard, A., Albarėde, F., 1986. The REE content of some hydrothermal fluids. Chemical Geology, 55: 51-60; https://doi.org/10.1016/0009-2541(86)90127-0
  • 34. Michard, A., Albarėde, F., Michard, G., Minster, J.F., Charlou, J.L., 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N). Nature, 303: 795-797; https://doi.org/10.1038/303795a0
  • 35. Miekeley, N., Couthino de Jesus, H., Porto da Silveira, C.L., 1992. Rare earth elements in groundwater from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Plcos de Caldas, Brazil. Journal of Geochemical Exploration, 45: 365-387; https://doi.Org/10.1016/0375-6742(92)90131 -Q
  • 36. Migaszewski, Z.M., Gałuszka, A., 2010. Xenotime from the Podwiśniówka mine pit, Holy Cross Mountains (South-Central Poland). Mineralogia, 41 (1-2): 1-7; https://doi.org/10.2478/v10002-010-0007-y
  • 37. Migaszewski, Z.M., Gałuszka, A., 2015.The characteristics, occurrence and geochemical behavior of rare earth elements in the environment: a review. Critical Reviews in Environmental Science and Technology, 45: 429-471; https://doi.org/10.1080/10643389.2013.866622
  • 38. Migaszewski, Z.M., Gałuszka, A., 2019. The origin of pyrite mineralization: Implications for Late Cambrian geology of the Holy Cross Mountains (south-central Poland). Sedimentary Geology, 390: 45-61; https://doi.org/10.1016/j.sedgeo.2019.07.004
  • 39. Migaszewski, Z.M., Gałuszka, A., 2023. Hydrothermal TiO2 polymorphs in a pyrite stratiform deposit: lessons from a mineralogical and geochemical multiproxy record. Chemical Geology, 632: 121551; https://doi.org/10.1016/j.chemgeo.2023.121551
  • 40. Migaszewski, Z.M., Starnawska, E., Gałuszka, A., 2007. Gorceixite from the Upper Cambrian rocks of the Podwiśniówka mine pit, Holy Cross Mountains (south-central Poland). Mineralogia Polonica, 38: 171-184; https://doi.org/10.2478/v10002-007-0025-6
  • 41. Migaszewski, Z.M., Gałuszka, A., Hałas, S., Dołęgowska, S., Dąbek, J., Starnawska, E., 2008. Geochemistry and stable sulfur and oxygen isotope ratios of the Podwiśniówka pit pond water generated by acid mine drainage (Holy Cross Mountains, south-central Poland). Applied Geochemistry, 23: 3620-3634; https://doi.org/10.1016/j.apgeochem.2008.09.001
  • 42. Migaszewski, Z.M., Gałuszka, A., Michalik, A., Dołęgowska, S., Migaszewski, A., Hałas, S., Trembaczowski, A., 2013. The use of stable sulfur, oxygen and hydrogen isotope ratios as geochemical tracers of sulfates in the Podwiśniówka acid drainage area (South-Central Poland). Aquatic Geochemistry, 19: 261-280; https://doi.org/10.1007/s10498-013-9194-7
  • 43. Migaszewski, Z.M., Gałuszka, A., Dołęgowska, S., 2016. Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland. Environmental Science and Pollution Research, 23: 24943-24959; https://doi.org/10.1007/s11356-016-7713-y
  • 44. Migaszewski, Z.M., Gałuszka, A., Dołęgowska, S., 2018a. Stable isotope geochemistry of acid mine drainage from the Wiśniówka area (south-central Poland). Applied Geochemistry, 95: 45-56; https://doi.org/10.1016/j.apgeochem.2018.05.015
  • 45. Migaszewski, Z.M., Gałuszka, A., Dołęgowska, S., 2018b. Arsenic in the Wiśniówka acid mine drainage area (south-central Poland) - mineralogy, hydrogeochemistry, remediation. Chemical Geology, 493: 491-503; https://doi.org/10.1016/j.chemgeo.2018.06.027
  • 46. Migaszewski, Z.M., Gałuszka, A., Dołęgowska, S., 2019. Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland). Environmental Pollution, 244: 898-906; https://doi.org/10.1016/j.envpol.2018.10.106
  • 47. Mikulski, S.Z., Brański, P., Pieńkowski, G., Małek, R., Zglinicki, K., Chmielewski, A., 2021. REE enrichment of sedimentary formations in selected regions of the Mesozoic margin of the Holy Cross Mountains - promising preliminary data and more research needed (in Polish with English summary). Przegląd Geologiczny, 69: 379-385; http://dx.doi.org/10.7306/2021.21
  • 48. Mills, R.A., Elderfield, H., 1995. Rare earth element geochemistry of hydrothermal deposits from the ac tive TAG mound, 26°N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 59: 3511-3524; https://doi.org/10.1016/0016-7037(95)00224-N
  • 49. Moreno-González, R., Cánovas, C.R., Olías, M., Macías, F., 2020. Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain). Environmental Pol lution, 259, 113829; https://doi.org/10.1016/j.envpol.2019.113829
  • 50. Nriagu, J.O., 1976. Phosphate - clay mineral relations in soils and sediments. Canadian Journal of Earth Science, 13: 717-736; https://doi.org/10.1139/e76-077
  • 51. Orłowski, S., 1975. Cambrian and Upper Precambrian lithostratigraphic units in the Holy Cross Mts. (in Polish) Acta Geologica Polonica, 25: 431-448.
  • 52. Rasmussen, B., 1996. Early-diagenetic REE-phosphate minerals (florencite, crandallite, gorceixite and xenotime) in marine sandstones: A major sink for oceanic phosphorus. American Journal of Science, 296: 601-632; https://doi.org/10.2475/ajs.296.6.601
  • 53. Rasmussen, B., 2005. Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth-Science Reviews, 68: 197-243; https://doi.org/10.1016/j.earscirev.2004.05.004
  • 54. Rasmussen, B., Buick, R., Taylor, W.R., 1998. Removal of oceanic REE by authigenic precipitation of phosphatic minerals. Earth and Planetary Science Letters, 164: 135-149; https://doi.org/10.1016/S0012-821X(98)00199-X
  • 55. Rasmussen, B., Fletcher, I.R., Muhling, J.R., Thorne, W.S., Broadbent, G.C., 2007. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth and Planetary Science Letters, 258: 249-259; https://doi.org/10.1016/j.epsl.2007.03.033
  • 56. Richter, D.K., Krampitz, H., Görgen, P., Götte, T., Neuser, R.D., 2006. Xenotime in the Lower Buntsandstein of Central Europe: Evidence from cathodoluminescence investigation. Sedimentary Geology, 183: 261-268; https://doi.org/10.1016/j.sedgeo.2005.09.017
  • 57. Sawłowicz, Z., 2013. REE and their relevance to the development of the Kupferschiefer copper deposits in Poland. Ore Geology Reviews, 55: 176-186; https://doi.org/10.1016/j.oregeorev.2013.06.006
  • 58. Schieber, J., 2001. A role for organic petrology in integrated studies of mudrocks: examples from Devonian black shales of the eastern US. International Journal of Coal Geology, 47: 171-187; https://doi.org/10.1016/S0166-5162(01)00041-6
  • 59. Stanisławska, M., Michalik, M., 2008. Xenotime-(Y) veins in a Neoproterozoic metamudstone (Małopolska Block, S. Poland). Mineralogia, 39: 105-113; https://doi.org/10.2478/v10002-008-0008-2
  • 60. Stoffregen, R.F., Alpers, C.N., 1987. Woodhouseite and svanbergite in hydrothermal ore deposits: product of apatite destruction during advanced argillic alteration. Canadian Mineralogist, 2: 201-211.
  • 61. Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, Melbourne.
  • 62. Vallini, D.A., Rasmussen, B., Krapez, B., Fletcher, I.R., McNaughton, N.J., 2005. Microtextures, geochemistry and geochronology of authigenic xenotime: constraining the cementation history of a Palaeoproterozoic metasedimentary sequence. Sedimentology, 52: 101-122; https://doi.org/10.1111/j.1365-3091.2004.00688.x
  • 63. Wang, J., Chen, D., Wang, D., Yan, D., Zhou, X., Wang, Q., 2012. Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran-Cambrian Transition. Sedimentology, 59: 809-829; https://doi.org/10.1111/j.1365-3091.2011.01280.x
  • 64. Wani, H., 2017. REE Characteristics and REE mixing modeling of the Proterozoic quartzites and sandstones. International Journal of Geosciences, 8: 16-29; http://dx.doi.org/10.4236/ijg.2017.81002
  • 65. Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59: 1217-1232; https://doi.org/10.1016/0016-7037(95)00038-2
  • 66. William-Jones, E.A., Artas, M.A., 2014. Rare earth element transport and deposition by hydrothermal fluids. Acta Geologica Sinica,88: 472-474; https://doi.org/10.1111/1755-6724.12373_28
  • 67. Żylińska, A., Szczepanik, Z., Salwa, S., 2006. Cambrian of the Holy Cross Mountains, Poland: biostratigraphy of the Wiśniówka Hill succession. Acta Geologica Polonica, 56: 443-461.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c130a89c-cce5-41cc-8414-bb0aabad11f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.