PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane using Multi-walled Carbon Nanotube-supported Palladium Catalysts: an Optimization Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on the optimization of parameters affecting the reductive debenzylation of hexabenzylhexaazaisowurtzitane using multiwalled carbon nanotube-supported palladium catalysts. Initially the influence of functionalized carbon nanotubes, including OH and COOH groups, were compared with basic multi-walled carbon nanotubes, and their impact on the reaction yield was evaluated. Among these catalyst supports, hydroxylated multi-walled carbon nanotubes showed superior efficiency for producing tetraacetyldibenzylhexaazaisowurtzitane from hexabenzylhexaazaisowurtzitane. The effect of catalyst preparation factors on the reaction yield were screened by using a 25-2 fractional factorial design. Parameters, including percent palladium, adsorption time, pH and adsorption temperature, were optimized by applying a central composite design. The optimum values of these factors were: 12.97% Pd, adsorption time 1.81 h, pH 9.61 and adsorption temperature 42.78 °C. A value of 76% was obtained for the reaction yield under optimum conditions.
Słowa kluczowe
Rocznik
Strony
439--458
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • School of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, P.O. Box: 16765-3454 Tehran, Iran
autor
  • School of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, P.O. Box: 16765-3454 Tehran, Iran
  • School of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, P.O. Box: 16765-3454 Tehran, Iran
autor
  • School of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, P.O. Box: 16765-3454 Tehran, Iran
Bibliografia
  • [1] Sysolyatin S.V., Lobanova A.A., Chernikova Y.T., Sakovich G.V., Methods of Synthesis and Properties of Hexanitrohexaazaisowurtzitane, Russ. Chem. Rev., 2005, 74(8), 757-764.
  • [2] Mathieu J., Stucki H., Military High Explosives, Chimia, 2004, 58(6), 383-389.
  • [3] Wardle R.B., Hinshaw J.C., Braithwaite P., Rose M., Johnston G., Jones R., Poush K., Synthesis of the Caged Nitramine HNIW (CL-20), 27th Int. Annu Conf. ICT, Karlsruhe, Germany, 1996, 1-10.
  • [4] Olah G.A., Squire D.R., Chemistry of Energetic Materials, Academic Press Inc., 1991, pp. 95-104, ISBN 0-12-525440-7.
  • [5] Bayat Y., Mokhtari J., Farhadian N., Bayat M., Heteropoly acids: An Efficient Catalyst for Synthesis of CL-20, J. Energ. Mater., 2012, 30(2), 124-134.
  • [6] Pang S.P., Yu Y.Z., Zhao X.Q., A Novel Synthetic Route to Hexanitrohexaazaisowurtzitane, Propellants Explos. Pyrotech., 2005, 30(6), 442-444.
  • [7] Nielsen A.T., Nissan R.A., Vanderah D.J., Coon C.L., Gilardi R.D., George C.F., Flippen-Anderson J., Polyazapolycyclics by Condensation of Aldehydes with Amines. 2. Formation of 2,4,6,8,10, 12-hexabenzyl-2,4,6,8,10, 12-hexaazatetracyclo [5.5. 0.05. 9.03, 11] dodecanes from Glyoxal and Benzylamines, J. Org. Chem., 1990, 55(5), 1459-1466.
  • [8] Herve G., Jacob G., Gallo R., Preparation and Structure of Novel Hexaazaisowurtzitane Cages, Chem. Eur. J., 2006, 12(12), 3339-3344.
  • [9] Nielsen A.T., Caged Polynitramine Compound, US Patent, 5693794 A, 1997.
  • [10] Bellamy A.J., Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane, Tetrahedron, 1995, 51(16), 4711-4722.
  • [11] Tamotsu K., Preparation of Hexakis (trimethylsilylethylcarbamyl) hexaazaisowurtzitane, Japanese Patent, 06321962 A2, 1994.
  • [12] Wardle R., Hinshaw J., Multi Step Synthesis of Polycyclic Polyamides as Precursors for Polycyclic Polynitramine Oxidizers in Propellants and Explosives, UK Patent 2333292, 1999.
  • [13] Wardle R.B., Hinshaw J.C., Synthesis and Reactions, of Hexaazaisowurtzitane Type Compounds in Synthesis of Hexanitrohexaazaisowurtzitane (HNIW) Explosive, US Patent 6147209 A, 2000.
  • [14] Ou Y.X., Xu Y.J., Chen B.R., Liu L.H., Wang C., Synthesis of Hexanitrohexaazaisowurtzitane from Tetraacetyldiformylhexaazaisowurtzitane (in Chinese), Chin. J. Org. Chem., 2000, 20(4), 556-559.
  • [15] Ohno M., Okamura N., Kose T., Asada T., Kawata K., Effect of Palladium Loaded Activated Carbons on Hydrogen Storage, J. Porous Mater., 2012, 19(6), 1063-1069.
  • [16] Bueres R.F., Asedegbega-Nieto E., Díaz E., Ordóñez S., Díez F.V., Preparation of Carbon Nanofibres Supported Palladium Catalysts for Hydrodechlorination Reactions, Catal. Commun., 2008, 9(10), 2080-2084.
  • [17] Iijima S., Helical Microtubules of Graphitic Carbon, Nature, 1991, 354(6348), 56-58.
  • [18] Ebbesen T., Ajayan P., Large-Scale Synthesis of Carbon Nanotubes, Nature, 1992, 358(6383), 220-222.
  • [19] Li W., Xie S., Qian L., Chang B., Zou B., Zhou, W., Zhao R., Wang G., Large-scale Synthesis of Aligned Carbon Nanotubes, Science, 1996, 274(5293), 1701-1703.
  • [20] Loiseau A., Launois P., Petit P., Roche S., Salvetat, J.P., Understanding Carbon Nanotubes. Lecture Notes in Physics, Springer-Verlag, Berlin, Heidelberg, 2006, 677, p. 555, ISBN 978-3-540-26922-9.
  • [21] Ball S., Sharman J., Harkness I., Proton Exchange Membrane Fuel Cells: Materials Properties and Performance, Platinum Met. Rev., 2011, 55(4), 225-228.
  • [22] Jung A., Jess A., Schubert T., Schütz W., Performance of Carbon Nanomaterial (Nanotubes and Nanofibres) Supported Platinum and Palladium Catalysts for the Hydrogenation of Cinnamaldehyde and of 1-Octyne, Appl. Catal. A: General, 2009, 362(1), 95-105.
  • [23] Köhler K., Heidenreich R.G., Krauter J.G., Pietsch J., Highly Active Palladium Activated Carbon Catalysts for Heck Reactions: Correlation of Activity, Catalyst properties and Pd Leaching, Chem. Eur. J., 2002, 8(3), 622-631.
  • [24] Ryoo R., Joo S.H., Kruk M., Jaroniec M., Ordered Mesoporous Carbons, Adv. Mater., 2001, 13(9), 677-681.
  • [25] Bahr J.L., Tour J.M., Covalent Chemistry of Single-Wall Carbon Nanotubes, J. Mater. Chem., 2002, 12(7), 1952-1958.
  • [26] Bennett J., Fishwick R., Spence R., Wood J., Winterbottom J., Jackson S., Stitt E., Hydrogenation of 2-Pentyne over Pd/Al2 O3 Catalysts: Effect of Operating Variables and Solvent Selection, Appl. Catal. A: General, 2009, 364(1), 57-64.
  • [27] Iwasa N., Arai S., Arai M., Selective Oxidation of CO with Modified Pd/ZnO Catalysts in the Presence of H2: Effects of Additives and Preparation Variables, Appl. Catal. B: Environmental, 2008, 79(2), 132-141.
  • [28] Gurrath M., Kuretzky T., Boehm H., Okhlopkova L., Lisitsyn A., Likholobov V., Palladium Catalysts on Activated Carbon Supports: Influence of Reduction Temperature, Origin of the Support and Pretreatments of the Carbon Surface, Carbon, 2000, 38(8), 1241-1255.
  • [29] Nwabueze T.U., Review article: Basic Steps in Adapting Response Surface Methodology as Mathematical Modelling for Bioprocess Optimisation in the Food Systems, Int. J. Food Sci. Technol., 2010, 45(9), 1768-1776.
  • [30] Cukic T., Kraehnert R., Holena M., Herein D., Linke D., Dingerdissen U., The Influence of Preparation Variables on the Performance of Pd/Al2O3 Catalyst in the Hydrogenation of 1,3-butadiene: Building a Basis for Reproducible Catalyst Synthesis, Appl. Catal. A: General, 2007, 323, 25-37.
  • [31] Card R.J., Schmitt J.L., Simpson J.M., Palladium-Carbon Hydrogenolysis Catalysts: The Effect of Preparation Variables on Catalytic Activity, J. Catal., 1983, 79(1), 13-20.
  • [32] Blondet F.P., Vincent T., Guibal E., Hydrogenation of Nitrotoluene Using Palladium Supported on Chitosan Hollow Fiber: Catalyst Characterization and Influence of Operative Parameters Studied by Experimental Design Methodology, J. Biol. Macromol., 2008, 43(1), 69-78.
  • [33] Koskin A., Simakova I., Parmon V., Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane the Key Step of the Synthesis of Polycyclic Nitramine Hexanitrohexaazaisowurtzitane, Russ. Chem. Bull. Int. Ed., 2007, 56(12), 2370-2375.
  • [34] Morgan E., Chemometrics: Experimental Design: Analytical Chemistry by Open Learning, Wiley, Chichester, 1991, ISBN 9780471929031.
  • [35] Montgomery D.C., Design and Analysis of Experiments, 5th ed., Wiley, New York, 2001, ISBN 978-0471316497.
  • [36] Eriksson L., Johansson E., Kettaneh-Wold N., Wikstrom C., Wold S., Design of Experiments: Principles and Applications., 3th ed., MKS Umetrics AB, 2008, ISBN 978-91-973730-4-3.
  • [37] Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A., Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry, Talanta, 2008, 76(5), 965-977.
  • [38] Zhang J., Fu D., Xu Y., Liu C., Optimization of Parameters on Photocatalytic Degradation of Chloramphenicol Using TiO2 as Photocatalyist by Response Surface Methodology, J. Environ. Sci., 2010, 22(8), 1281-1289.
  • [39] Johansson E., Kettaneh-Wold N., Wikstrom C., Wold S., Ericksson L., Design of Experiments, Principles and Applications, 3rd ed., Umetric Academy, Sweden, 2009, ISBN 91-973730-4-4.
  • [40] Tauler R., Walczak B., Brown S.D., Comprehensive Chemometrics: Chemical and Biochemical Data Analysis, Elsevier, 2009, pp. 361-373, ISBN 978-0-444-52702-8.
  • [41] Hadjmohammadi M., Ebrahimi P., Optimization of the Separation of Anticonvulsant Agents in Mixed Micellar Liquid Chromatography by Experimental Design and Regression Models, Anal. Chim. Acta, 2004, 516(1), 141-148.
  • [42] Serp P., Corrias M., Kalck P., Carbon Nanotubes and Nanofibers in Catalysis, Appl. Catal. A, 2003, 253(2), 337-358.
  • [43] Ravikumar K., Pakshirajan K., Swaminathan T., Balu K., Optimization of Batch Process Parameters Using Response Surface Methodology for Dye Removal by a Novel Adsorbent, Chem. Eng. J., 2005, 105(3), 131-138.
  • [44] Kim H., Kim J., Cho J., Hong J., Optimization and Characterization of UV-Curable Adhesives for Optical Communications by Response Surface Methodology, Polym. Test., 2003, 22(8), 899-906.
  • [45] Jalali-Heravi M., Parastar H., Ebrahimi-Najafabadi H., Characterization of Volatile Components of Iranian Saffron Using Factorial-Based Response Surface Modeling of Ultrasonic Extraction Combined with Gas Chromatography-Mass Spectrometry Analysis, J. Chromatogr. A, 2009, 1216(33), 6088-6097.
  • [46] Sejidov F.T., Mansoori Y., Goodarzi N., Esterification Reaction Using Solid Heterogeneous Acid Catalysts Under Solvent-less Condition, J. Mol. Catal. A: Chemical, 2005, 240(1), 186-190.
  • [47] Mason R.L., Gunst R.F., Hess J.L., Statistical Design and Analysis of Experiments: with Applications to Engineering and Science, 2nd ed., John Wiley & Sons, Hoboken, NJ, 2003, Vol. 474, ISBN 978-0-471-37216-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c12a1c98-3fa5-4336-a876-8ad0045e7cf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.