PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Selection of the open pit mining cut-off grade strategy under price uncertainty using a risk based multi-criteria ranking system

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wybór strategii określania warunku opłacalności wydobycia w kopalniach odkrywkowych w warunkach niepewności cen w oparciu o wielokryterialny system rankingowy z uwzględnieniem czynników ryzyka
Języki publikacji
EN
Abstrakty
EN
Cut-off Grade Strategy (COGS) is a concept that directly influences the financial, technical, economic, environmental, and legal issues in relation to exploitation of a mineral resource. A decision making system is proposed to select the best technically feasible COGS under price uncertainty. In the proposed system both the conventional discounted cash flow and modern simulation based real option valuations are used to evaluate the alternative strategies. Then the conventional expected value criterion and a multiple criteria ranking system were used to rank the strategies based on the two valuation methods. In the multiple criteria ranking system besides the expected value other stochastic orders expressing abilities of strategies in producing extra profits, minimizing losses and achieving the predefined goals of the exploitation strategy are considered. Finally, the best strategy is selected based on the overall average rank of strategies through all ranking systems. The proposed system was examined using the data of Sungun Copper Mine. To assess the merits of the alternatives better, ranking process was done at both high (prevailing economic condition) and low price conditions. Ranking results revealed that at different price conditions and valuation methods, different results would be obtained. It is concluded that these differences are due to the different behavior of the embedded option to close the mine early, which is more likely to be exercised under low price condition rather than high price condition. The proposed system would enhance the quality of decision making process by providing a more informative and certain platform for project evaluation.
PL
Strategia doboru granicy opłacalności (COGS) jest koncepcją mająca bezpośredni wpływ na kwestie finansowe, techniczne, ekonomiczne, środowiskowe oraz prawne związane z eksploatacją surowców naturalnych. Zaproponowano system decyzyjny umożliwiający wybór najkorzystniejszej fizycznie wykonalnej strategii doboru opłacalności wydobycia w warunkach niepewności cen. W proponowanym systemie do analizy alternatywnych strategii wykorzystuje się konwencjonalne metody oparte o analizy przepływu strumienia gotówki oraz nowoczesne techniki symulacji rzeczywistych opcji. Następnie zastosowano tradycyjny system oparty o kryterium wartości oczekiwanej oraz system rankingu wielokryterialnego do określenia rankingu strategii, w oparciu o dwie metody oceny. W systemie wielokryterialnym obok wartości oczekiwanej uwzględnia się inne dane stochastyczne określające zdolność poszczególnych strategii do generowania dodatkowych zysków, do ograniczania strat i osiągania wcześniej zdefiniowanych celów. W etapie końcowym dokonuje się wyboru optymalnej strategii w oparciu o całkowity ranking strategii uwzględnionych w systemie. Proponowane podejście testowano w oparciu o dane uzyskane z kopalni miedzi Sungun. Aby ocenić zalety najlepszej alternatywy, ranking przeprowadzono przyjmując warunki wysokich i niskich cen. Wyniki rankingu wykazały, że w warunkach różnych cen i przy zastosowaniu różnych metod oceny, uzyskane rezultaty będą się różnić. Należy wnioskować, że różnice te spowodowane są różnicami w podejściu do wbudowanej opcji wczesnego zamknięcia kopalni, która ma większą szansę na realizację w warunkach niskich cen, a nie wysokich. Proponowany system podniesie jakość procesu decyzyjnego poprzez dostarczenie platformy dodatkowych informacji dla oceny przedsięwzięcia.
Rocznik
Strony
741--768
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • Amirkabir University of Technology, Depratment of Mining and Metallurgy, Hafez Ave., Tehran, Iran
autor
  • Amirkabir University of Technology, Depratment of Mining and Metallurgy, Hafez Ave., Tehran, Iran
  • Amirkabir University of Technology, Depratment of Mining and Metallurgy, Hafez Ave., Tehran, Iran
Bibliografia
  • Abdel Sabour S.A., Dimitrakopoulos R., Kumral M., 2008. Mine plan selection under uncertainty. Mining Technology: IMM Transactions Section A 117, 2, 53-64.
  • Abdel Sabour S.A., Poulin R., 2006. Valuing real capital investments using the least-squares Monte Carlo method. The Engineering Economist 51, 2, 141-160.
  • Akaike A., Dagdelen K., 1999. A strategic production scheduling method for an open pit mine. In: Proceedings of the 28th APCOM, Golden Colorado, USA, 729-738.
  • Akbari A.D., Osanloo M., Shirazi M.A., 2009. Minable reserve estimation while determining ultimate pit limits, UPL) under price uncertainty by real option approach, ROA). Arch. Min. Sci., Vol. 54, No 2, p. 321-339.
  • Asad M.W.A., 2005. Cutoff grade optimization algorithm with stockpiling option for open pit mining operations of two economic minerals. Int. J. Surf. Min. Reclamation Environ., 19, 3, 176-187.
  • Ataei M., Osanloo M., 2004. Using a Combination of Genetic Algorithm and the Grid Search Method to Determine Optimum Cutoff Grades of Multiple Metal Deposits. International Journal of Surface Mining Reclamation and Environment (IJSM) 18, 1, 60-78.
  • Ataei M., Osanloo M., 2003a. Determination of optimum cutoff grades of multiple metal deposits by using golden section search. Journal of the South African institute of mining and metallurgy (SAIMM) 103, 8, 493-500.
  • Ataei M., Osanloo M., 2003b. Methods for Calculation of Optimal Cutoff Grades in Complex Ore Deposits. Journal of Mining Science 39, 5, 499-507.
  • Azimi Y., Osanloo M., 2011. Determination of open pit mining cut-off grade strategy using combination of nonlinear programming and genetic algorithm. Arch. Min. Sci., Vol. 56, No 2, p. 189-212.
  • Bascetin A., 2007. Determination of optimal cut-off grade policy to optimize NPV using a new approach with optimization factor. Journal of the South African Institute of Mining and Metallurgy 107, 2, 87-94.
  • Bellman R., 1957. Dynamic Programming. Princeton University Press New Jersey, USA.
  • Berry E.S., 1922. Present value in its relation to ore reserves, plant capacity and grade of ore. The American Institute of Mining and Metallurgical Engineers 187, 11-16.
  • Black F., Scholes M., 1973. The pricing of options and corporate liabilities. J. Political Econom., 81, 3, 637-654.
  • Boyle P., 1997. Options: a Monte Carlo approach. J. Financial Economics 4, 3, 323-338.
  • Brennan M.J., Schwartz E.S., 1985. Evaluating natural resource investments. Jbus 58, 2, 135-157.
  • Cairns R.D., Shinkuma T., 2003. The choice of the cutoff grade in mining. Resour. Policy 29, 3-4, 75-81.
  • Camus J.P., Jarpa S.G., 1996. Long range planning at Chuqicamata mine. In: Proceedings of the 26th APCOM, Penn State University, USA, 237-241.
  • Cetin E., Dowd P.A., 2002. The use of genetic algorithms for multiple cutoff grade optimization. In: Proceedings of the 30th APCOM , Littleton, Colorado, USA, 769-780.
  • Cortazar G., Gravet M., Urzua J., 2008. The valuation of multidimensional American real options using the LSM simulation method. Computers & Operations Research 35, 1, 113-129.
  • Cox JC., Ross SA., Rubinstein M., 1979. Option pricing: a simplified approach. J. Financ. Econ., 7, 3, 229-263.
  • Dagdelen K., 2007. Open Pit Optimization — Strategies for Improving Economics of Mining Projects through Mine Planning ore body. In: Orebody Modelling and Strategic Mine Planning (ed: R Dimitrakopoulos), Perth, Western Australia, 145-148.
  • Dagdelen K., 1992. Cut-off grade optimization. In: Proceedings of the 23th APCOM, Littleton, Colorado, USA, 157-165.
  • Dimitrakopoulos R., Abdel Sabour S.A., 2007. Evaluating mine plans under uncertainty: can the real options make a difference? Resour. Policy 32, 3, 116-125.
  • Dixit A.K., Pindyck R.S., 1994. Investment under uncertainty. Princeton University Press Princeton.
  • Dowd P.A., 1997. Risk in minerals projects analysis, perception and management. Mining Technology: IMM Transactions Section A 106, 9-18.
  • Dowd P.A., 1976. Application of dynamic and stochastic programming to optimize cutoff grades and production rates. Mining Technology: IMM Transactions Section A 85, 22-31.
  • Gligoric Z., et al., 2011. Hybrid model of evaluation of underground lead – zinc mine capacity expansion project using Monte Carlo simulation and fuzzy numbers. Simulation: Transactions of the Society for Modeling and Simulation International 87, 8, 726-742.
  • Henning U., 1963. Calculation of cut-off grade. Can. Min. J., 84, 3, 54-57.
  • King B.M., 2001. Optimal mine scheduling policies. Dissertation, Royal School of Mines, London University.
  • Krautkraemer J.A., 1988. The cut-off grade and the theory of extraction. Canadian Journal of Economics 21, 1, 146-160.
  • Lane K.F., 1988. The Economic Definition of Ore: Cutoff Grades in Theory and Practice. Mining Journal Books Ltd, London, UK .
  • Lane K.F., 1964. Choosing the optimum cut-off grade. Quarterly of the Colorado School of Mines 59, 811-829.
  • Lemelin B.M., Abdel Sabour S.A., Poulin R., 2007. A flexible mine production model based on stochastic price simulations: application at Raglan mine, Canada. Mining Technology: IMM Transactions Section A 116, 4, 158-166.
  • Longstaff F.A., Schwartz E.S., 2001. Valuing American options by simulation: a simple least-squares approach. Rev Financial Stud 14, 1, 113-147.
  • Mardones J., 1993. Option valuation of real assets: Application to a copper mine with operating flexibility. Resour. Policy 19, 1, 51-65.
  • McIsaac G., 2008. Strategic design of an underground mine under conditions of metal price uncertainty. Dissertation, Queen’s University, Kingston, Ontario, Canada.
  • Osanloo M., Rashidinejad F., Rezai B., 2008. Incorporating environmental issues into optimum cut-off grades modeling at porphyry copper deposits. Resour. Policy 33, 4, 222-229.
  • Osanloo M., Ataei M., 2003. Using equivalent grade factors to find the optimum cutoff grades of multiple metal deposits. Minerals Engineering 16, 8, 771-776.
  • Rashidinejad F., Osanloo M., Rezai B., 2008. Cutoff grade optimization with environmental management; a case study: Sungun copper mine. IUST International Journal of Engineering Science 19, 5-1, 1-13.
  • Samis M., Davis, G.A., Laughton D., Poulin R., 2006. Valuing uncertain asset cash flows when there are no options: a real options approach. Resour. Policy 30, 4, 285-298.
  • Schwartz E.S., 1997. The stochastic behaviour of commodity prices: implications for valuation and hedging. J. Finance 52, 3, 923-973.
  • Schwartz E.S., 1977. The valuation of warrants: Implementing a new approach. Journal of Financial Economics 4, 1-2, 79-93.
  • Taylor H.K., 1972. General background theory of cutoff grades. Mining Technology: IMM Transactions Section A 81, 160-179.
  • Thompson J., 2010. Test of an innovative stochastic design system on an open pit. Dissertation, Queen’s University, Kingston, Ontario, Canada.
  • Topal E., 2008. Evaluation of a mining project using Discounted Cash Flow analysis, Decision Tree analysis, Monte Carlo Simulation and Real Options using an example. International Journal of Mining and Mineral Engineering 1, 1, 62-76.
  • Trigeorgis L., 1996. Real options: managerial flexibility and strategy in resource allocation. MIT Press: Cambridge 28, 1, 1-20.
  • Vallee M., 2000. Mineral resource + engineering, economic and legal feasibility = ore reserve. CIM Bull 93, 1038, 53-61.
  • Whittle J., Wharton C., 1995. Optimizing cut-offs over time. In: Proceedings of the 25th APCOM, Brisbane, Australia, 261-265.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1266f4b-1507-4b78-a460-fa674e16d9c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.