PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Waste Water Purification from Metal Ions by Ultra-Dispersed Natural Sorbents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is devoted to mine wastewater purification from metal ions, such as copper, zinc, lead, cadmium, iron, and manganese. The rationale was provided for the possibility to purify the wastewater from metal ions with nonactivated and ultra-dispersed natural sorbents. The adsorption capacity of bentonite clay from Tagan deposit and shungite from Koksui deposit of the Republic of Kazakhstan was studied on the basis of its fraction composition. It was found that the most effective method of sorbents modification was mechanical activation. The comparative studies of metal ions adsorption efficiency were carried out with mechanically activated and ultra-dispersed bentonite clay and shungite. The experiment enabled to find out that ultra-dispersed bentonite clay is prospective for use in order to deeply purify multicomponent mine wastewater. The highest degree of metal ions extraction was achieved due to 30-minutes contact of wastewater.
Rocznik
Strony
43--50
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • D. Serikbayev East Kazakhstan Technical University, 19, Serikbayev str., Ust-Kamenogorsk, 070000, Kazakhstan
  • D. Serikbayev East Kazakhstan Technical University, 19, Serikbayev str., Ust-Kamenogorsk, 070000, Kazakhstan
Bibliografia
  • 1. Agilent. 2019. ICP-MS Agilent 7500 cx inductively coupled plasma mass spectrometer manufactured by Agilent Technologies. http://www.myco-analytical.com/product/agilent-7500cx-icpms. Accessed 13 March 2019.
  • 2. Al-Qodah, Z., Al-Shannag, M. 2017. Heavy metal ions removal from wastewater using electrocoagulation processes: A comprehensive review. Separation Science and Technology, 1–28.
  • 3. Ali A., Quist-Jensen C. A., Jørgensen M. K., Siekierka A., Christensen M. L., Bryjak M., Drioli E. 2021. A review of membrane crystallization, forward osmosis and membrane capacitive deionization for liquid mining. Resources, Conservation and Recycling, 168, 105273.
  • 4. Aziz B.K., Shwan D. M. S., Kaufhold S. 2019.Characterization of Tagaran natural clay and its efficiency for removal of cadmium (II) from Sulaymaniyah industrial zone sewage. Environmental Science and Pollution Research, 27, 38384–38396
  • 5. Brahmi K., Bouguerra W., Harbi S., Elaloui E., Loungou M., Hamrouni B. 2018. Treatment of heavy metal polluted industrial wastewater by a new water treatment process: ballasted electroflocculation. Journal of Hazardous Materials, 344, 968–980.
  • 6. Daumova G.K., Abdulina S.A., Kokayeva G.A., Adilkanova M.A. 2018. Experimental studies on wastewater sorption treatment with subsequent disposal of used sorbents. Chemical Engineering Transactions, 70, 2125–2130.
  • 7. Djab M, Makhoukhi B. 2018. Adsorption of Cadmium onto modified bentonites from aqueous solutions. Journal of Materials and Environmental Sciences, 9, 2238–2246.
  • 8. Droste R.L., Gehr R.L. 2019. Theory and practice of water and wastewater treatment. Wiley, Hoboken, NJ, USA, ISBN: 978-1-119-31237-6.
  • 9. Ermolenko А. 2020. Sorbent Based on Polyvinyl Butyral and Potassium Polytitanate for Purifying Wastewater from Heavy Metal Ions. Processes, 8, 690.
  • 10. Iakovleva E., Sillanpää M. 2020. Novel sorbents from low-cost materials for water treatment. Advanced Water Treatment. 265–359.
  • 11. Koliehova A., Trokhymenko H., Melnychuk, S., Gomelya, M. 2019. Treatment of Wastewater Containing a Mixture of Heavy Metal Ions (Copper-Zinc, Copper-Nickel) using Ion-Exchange Methods. Journal of Ecological Engineering, 20(11),146-151.
  • 12.Kumrić K.R., Đukić A.B., Trtić-Petrović T.M., Vukelić N.S., Stojanović Z., Grbović Novaković J.D., Matović L.L. 2013. Simultaneous Removal of Divalent Heavy Metals from Aqueous Solutions Using Raw and Mechanochemically Treated Interstratified Montmorillonite/Kaolinite Clay. Industrial & Engineering Chemistry Research, 52:7930–7939.
  • 13. Mamyachenkov S.V., Adryshev A.K., Seraya N.V., Khairullina A.A., Daumova G.K. 2017 Nanostructured Complex Sorbent for Cleaning Heavy Metal Ions from Industrial Effluent. Metallurgist, 61, 615–623.
  • 14. Masindi V., Gitari M.W., Tutu H, DeBeer M. 2017. Synthesis of cryptocrystalline magnesite–bentonite clay composite and its application for neutralization and attenuation of inorganic contaminants in acidic and metalliferous mine drainage. Journal of Water Process Engineering, 15, 2–17.
  • 15. Masindi V, Muedi K.L. 2018. Environmental Contamination by Heavy Metals. Heavy Metals. 1151-1235.
  • 16. Pandey S. 2017. A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. Journal of Molecular Liquids, 241, 1091–1113.
  • 17. Pawar R.R, Lalhmunsiama Bajaj H.C, Lee S.M. 2016. Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies. Journal of Industrial and Engineering Chemistry, 34, 213–223.
  • 18. Płaza A., Kołodyńska D., Hałas P., Geca M., Franus M., Hubicki Z. 2017. The zeolite modified by chitosan as an adsorbent for environmental applications. Adsorp. Sci. Technol, 35, 834–844.
  • 19.Rajasulochana P., Preethy V. 2016. Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2(4), 175-184.
  • 20. Rambabu, K., Banat, F., Pham, Q. M., Ho, S.-H., Ren, N.-Q., & Show, P. L. 2020.Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024.
  • 21. Shahmirzadi M.A.A., Hosseini S.S., Luo J., Ortiz I. 2018. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal. J. Environ. Manag, 215, 324–344
  • 22. Tezcan Un. U., Onpeker S.E., Ozel E. 2017. The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge. Journal of Environmental Management, 200, 196–203.
  • 23.Toor M., Jin B., Dai S., Vimonses V. 2015. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry, 21, 653–661.
  • 24. Uddin M.K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462.
  • 25. Xue C., Qi P., Liu Y. 2018. Adsorption of aquatic Cd2+ using a combination of bacteria and modified carbon fiber. Adsorp. Sci. Technol, 36, 857–871.
  • 26. Yenial Ü., Bulut G. 2017. Examination of flotation behavior of metal ions for process water remediation. Journal of Molecular Liquids, 241, 130–135.
  • 27. Zheng X., Zhang Z., Yu D., Chen X., Cheng R., Min S., Wang J., Xiao Q., Wang J. 2015. Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply. Resources, Conservation and Recycling, 105, 1–10.
  • 28. Zhu Y., Dou P., He H., Lan H., Xu S., Zhang Y., Niu J. 2020. Improvement of permeability and rejection of an acid resistant polysulfonamide thin-film composite nanofiltration membrane by a sulfonated poly(ether ether ketone) interlayer. Separation and Purification Technology, 116528.
  • 29. Zivica V., Palou M.T. 2015. Physico-chemical characterization of thermally treated bentonite. Composites Part B: Engineering, 68, 436–445
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c11d57d0-9cdd-4e5a-862c-8511bdbe0971
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.