Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a prediction of bed form parameters (length and height) in the remote foreshore of the non-tidal sea. The study site is located in the south Baltic region, near the Coastal Research Station (CRS) in Lubiatowo, Poland (ca. 1–2 Nm off the shoreline at depths of around 16–20 m). The study site is an area with hydrodynamics and lithodynamics typical of the south Baltic coast, built of fine sands. Predictions are based on numerical modelling with an input of measured data. Numerical modelling uses assumptions of specific relations of sand wave height and length with shear stress, grain size, kinematic viscosity, or storm event frequency. To establish these relations for the study area, wave, sea temperature and wind data were collected near CRS Lubiatowo. To verify the predictions made in this research, bathymetric data from a field survey in the study area was used. The results show that the flow is mostly current-dominated. Sand waves formed by hydrodynamic conditions in this area have a steepness of 0.01 to 0.02, a length of 40 to 70 m and a height of 0.6 to 2.3 m.
Czasopismo
Rocznik
Tom
Strony
484--493
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
- 1. Aliotta, S., Perillo, G.M.E., 1987. A sandwave field in the entrance to Bahia Blanca estuary, Argentina. Mar. Geol. 76, 1-14. https://doi.org/10.1016/0025-3227(87)90013-2
- 2. Baas, J., Malarkey, J., Lichtman, I., Amoudry, L., Thorne, P., Hope, J., Peakall, J., Paterson, D., Bass, S., Cooke, R., Manning, A., Parsons, D., Ye, L., 2021. Current- and Wave-Generated Bedforms on Mixed Sand—Clay Intertidal Flats: A New Bedform Phase Diagram and Implications for Bed Roughness and Preservation Potential. Front. Earth Sci. 9. https://doi.org/10.3389/feart.2021.747567
- 3. Boothroyd, J.C., Hubbard, D.K., 1975. Genesis of bedforms in mesotidal estuaries. In: Cronin, L.E. (Ed.), Estuarine Research. Academic Press, Inc., New York, 217-234. https://doi.org/10.1016/B978-0-12-197502-9.50018-6
- 4. Cerkowniak, G.R., Ostrowski, R., Pruszak, Z., 2017. Application of Dean’s curve to investigation of a long-term evolution of the southern Baltic multi-bar shore profile. Oceanologia 59 (1), 18- 27. https://doi.org/10.1016/j.oceano.2016.06.001
- 5. Dalrymple, R.W., Rhodes, R.N., 1995. Chapter 13 Estuarine Dunes and Bars. In: Perillo, G.M.E. (Ed.), Geomorphology and Sedimentology of Estuaries. Elsevier Science, 359-422. https://doi.org/10.1016/S0070-4571(05)80033-0
- 6. Dalrymple, R.W., Knight, J.R., Lambiase, J.J., 1978. Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature 275, 100-104. https://doi.org/10.1038/275100a0
- 7. Flemming, B.W., 1988. Zur Klassifikation subaquatischer, stromungstrans ver saler Transportkorper. Boch. Geol. U. Geotech. Arb., v. 29, 44-47.
- 8. Gabel, S.L., 1993. Geometry and kinematics of dunes during steady and unsteady flows in the Calamus River, Nebraska, U.S.A. Sedimentology 40, 237-269. https://doi.org/10.1111/j.1365-3091.1993.tb01763.x
- 9. Gail, M.A., 1990. Classification of large-scale subaqueous bedforms: a new look at an old problem. In: Research symposium. Classification of subaqueous bed forms, 160-172. https://doi.org/10.2110/jsr.60.160
- 10. Hulscher, S.J., 1996. Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model. J. Geophys. Res. 101 (C9), 20727-20744. https://doi.org/10.1029/96JC01662
- 11. Kubacka, M., Rudowski, S., Wróblewski, R., Szefler, K., Gajewski, Ł., 2016. Giant subaqueous dunes on a tideless sea bottom, rozewie bank, southern Baltic. In: Van Landeghem, K.J.J., Garlan, T., Baas, J.H. (Eds.), Fifth International Conference on Marine and River Dune Dynamics. Caernarfon, United Kingdom, 4-6 April 2016. Bangor Univ., SHOM, Madrid.
- 12. Lacy, J.R., Rubin, D.M., Ikeda, H., Mokudai, K., Hanes, D.M., 2007. Bed forms created by simulated waves and currents in a large flume. J. Geophys. Res. 112, C10018. https://doi.org/10.1029/2006JC003942
- 13. Li, M.Z., Amos, C.L., 1998. Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environment. Cont. Shelf Res. 18, 941-970. https://doi.org/10.1016/S0278-4343(98)00034-X
- 14. Lu, Y.J., Li, S.Q., Zuo, L.Q., Liu, H.X., Roelvink, J.A., 2015. Advances in sediment transport under combined action of wave and currents. Int. J. Sediment Res. 30 (4), 351-360. https://doi.org/10.1016/j.ijsrc.2015.01.003
- 15. Malarkey, J., Davies, A.G., 1998. Modelling wave-current interactions in rough turbulent bottom boundary layers. Ocean Eng. 25, 119-141. https://doi.org/10.1016/S0029-8018(96)00062-5
- 16. Mazumder, R., 2003. Sediment transport, aqueous bedform stability and morphodynamics under unidirectional current: a brief overview. J. Afr. Earth Sci. 36, 1-14. https://doi.org/10.1016/S0899-5362(03)00018-6
- 17. McCave, I.N., 1971. Sand waves in the North Sea off the coast of Holland. Mar. Geol. 10, 199-225. https://doi.org/10.1016/ 0025-3227(71)90063-6
- 18. Ostrowski, R., Stella, M., 2020. Potential dynamics of non-tidal sea bed in remote foreshore under waves and currents. Ocean Eng. 207. https://doi.org/10.1016/j.oceaneng.2020.107398
- 19. Ostrowski, R., Schonhofer, J., Szmytkiewicz, P., 2015. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo, Poland. J. Marine Syst. 162, 89-97. https://doi.org/10.1016/j.jmarsys.2015.10.006
- 20. Ostrowski, R., Stella, M., Szmytkiewicz, P., Kapiński, J., Marcinkowski, T., 2018. Coastal hydrodynamics beyond the surf zone of the South Baltic Sea. Oceanologia 60 (3), 264-276. https://doi.org/10.1016/j.oceano.2017.11.007
- 21. Pruszak, Z., Szmytkiewicz, P., Ostrowski, R., Skaja, M., Szmytkiewicz, M., 2008. Shallow-water wave energy dissipation in a multi-bar coastal zone. Oceanologia 50 (1), 43-58.
- 22. Rudowski, S., Łęczyński, L., Gajewski, Ł., 2008. Sand waves on the bottom of the deep nearshore and their role in shore formation. Landform Analysis 9, 214-216 (in Polish).
- 23. Southard, J.B., 1971. Representation of bed configurations in depth—velocity—size diagrams. J. Sediment. Petrol. 41 (4), 903-915. https://doi.org/10.1306/74D723B0-2B21-11D7-8648000102C1865D
- 24. Southard, J.B., Boguchwal, L.A., 1990. Bedform configurations in steady unidirectional water flows. Part 2: synthesis of flume data. J. Sediment. Petrol. 60 (5), 658-679. https://doi.org/10.1306/212F9241-2B24-11D7-8648000102C1865D
- 25. Stella, M., 2021. Morphodynamics of the south Baltic seabed in the remote nearshore zone in the light of field measurements. Mar. Geol. 439. https://doi.org/10.1016/j.margeo.2021.106546
- 26. Stella, M., Ostrowski, R., Szmytkiewicz, P., Kapiński, J., Marcinkowski, T., 2019. Driving forces of sandy sediment transport beyond the surf zone. Oceanologia 61 (1), 50-59. https://doi.org/10.1016/j.oceano.2018.06.003
- 27. Szmytkiewicz, P., Szmytkiewicz, M., Uścinowicz, G., 2021. Lithodynamic Processes along the Seashore in the Area of Planned Nuclear Power Plant Construction: A Case Study. on Lubiatowo at Poland. Energies 14 (6), 1636. https://doi.org/10.3390/en14061636
- 28. Uścinowicz, S., Jegliński, W., Miotk-Szpiganowicz, G., Nowak, J., Pączek, U., Przeździecki, P., Szefler, K., Poręba, G., 2014. Impact of sand extraction from the bottom of the southern Baltic Sea on the relief and sediments of the seabed. Oceanologia 56 (4), 857-880. https://doi.org/10.5697/oc.56-4.857
- 29. Whitmeyer, S.J., Fitzgerald, D.M., 2008. Episodic dynamics of a sand wave field. Mar. Geol. 252, 24-37. https://doi.org/10.1016/j.margeo.2008.03.009
- 30. Van Rijn, L.C., 1984. Sediment transport, part III: bed forms and alluvial roughness. J. Hydraul. Eng. 110 (12), 1733-1754. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1733)
- 31. Yalin, S.M., 1964. Geometric properties of sandwaves. J. Hydraul. Div. 90 (HY5), 105-120. https://doi.org/10.1061/JYCEAJ. 0001097
- 32. Zarillo, G.A., 1982. Stability of bedforms in a tidal environment. Mar. Geol. 48, 337-351. https://doi.org/10.1016/0025-3227(82)90103-7
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c11ba270-2da1-4d36-8397-a0f5072e0247