PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accuracy assessment study of UNB3M neutral atmosphere model for global tropospheric delay mitigation

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tropospheric delay is the second major source of error after the ionospheric delay for satellite navigation systems. The transmitted signal could face a delay caused by the troposphere of over 2m at zenith and 20m at lower satellite elevation angles of 10 degrees and below. Positioning errors of 10m or greater can result from the inaccurate mitigation of the tropospheric delay. Many techniques are available for tropospheric delay mitigation consisting of surface meteorological models and global empirical models. Surface meteorological models need surface meteorological data to give high accuracy mitigation while the global empirical models need not. Several hybrid neutral atmosphere delay models have been developed by (University of New Brunswick, Canada) UNB researchers over the past decade or so. The most widely applicable current version is UNB3m, which uses the Saastamoinen zenith delays, Niell mapping functions, and a look-up table with annual mean and amplitude for temperature, pressure, and water vapour pressure varying with respect to latitude and height. This paper presents an assessment study of the behaviour of the UNB3m model compared with highly accurate IGS-tropospheric estimation for three different (latitude/height) IGS stations. The study was performed over four nonconsecutive weeks on different seasons over one year (October 2014 to July 2015). It can be concluded that using UNB3m model gives tropospheric delay correction accuracy of 0.050m in average for low latitude regions in all seasons. The model's accuracy is about 0.075m for medium latitude regions, while its highest accuracy is about 0.014m for high latitude regions.
Słowa kluczowe
Rocznik
Strony
201--215
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
autor
  • College of Engineering, Aswan University, Aswan, Egypt
Bibliografia
  • COESA (1966). U.S. Standard Atmosphere Supplements, 1966. U.S. Committee on Extension to the Standard Atmosphere. Sponsored by Environmental Science Services Administration, National Aeronautics and Space Administration, United States Air Force and published by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
  • Collins, J.P. and R.B. Langely (1997). A Tropospheric Delay Model for the User of the Wide Area Augmentation System. Final contract report prepared for Nav Canada, Department of Geodesy and Geomatics Engineering Technical Report No. 187, University of New Brunswick, Federiction, N.B., Canada.
  • Collins, J.P. and R.B. Langely (1998). The residual tropospheric propagation delay: How bad can it get? Proceeding of ION GPS-98, The 11th International Meeting of the Satellite Division of The Institute of Navigation, Nashville, Tenn., September 15-18, pp. 729-738.
  • Dodson, A.H. W. Chen, H.C. Baker, N.T. Penna, G.W. Roberts, J. Westbrook, and R. Jeans (1999). Assessment of EGNOS Tropospheric Correction Model. Proceeding of ION GPS-99, The 12th International Meeting of the Satellite Division of The Institute of Navigation, Nashville, Tenn., September 14-17, pp. 1401-1407.
  • Farah, A. (2004). GPS/GALILEO Simulation for Reduced Dynamic LEO Satellite Orbit Determination. PhD thesis. Nottingham University. UK.
  • Leonardo, R., Marcelo Santos, and Richard B. Langley (2006).” UNB Neutral Atmosphere Models: Development and Performance”. ION, national technical meeting, 2006.
  • Mendes, V. B. (1999). Modeling the Neutral-Atmosphere Propagation Delay in Radiometric Space Techniques. Ph.D. dissertation, Department of Geodesy and Geomatics Engineering Technical Report No. 199, University of New Brunswick, Fredericton, New Brunswick, Canada, pp. 353.
  • NCEI (2015). Numerical weather prediction, National Centers for Environmental Information (NCEI), (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/numericalweather-prediction) (Accessed 1/9/2015).
  • Niell, A.E. (1996) Global Mapping Functions for the Atmospheric Delay at Radio Wavelengths, Journal of Geophysical Research, Vol 101, No B2, pp. 3227-3246, 10 February 1996.
  • Penna, N., A. Dodson, and W. Chen, (2001) Assessment of EGNOS Tropospheric Correction Model. Journal of Navigation, Vol. 54, Issue 1, pp. 37-55.
  • RTCA (1999). Minimum operational performance standards for Global Positioning System/ Wide Area Augmentation System airborne equipment.
  • RTCA DO-229B, Issue 10 June 1999. RTCA, Inc. (2001) DO-229C, Minimum Operational Performance Standards for Global Positioning.
  • System/Wide Area Augmentation System Airborne Equipment, SC-169, RTCA, Inc., Washington, D.C.
  • Saastamoinen, J. (1973) Contributions to the Theory of Atmospheric Refraction. Part II Refraction Corrections in Satellite Geodesy. Bulletin Geodesique, pp. 13-34.
  • Smith, E. K. and Weintraub, S. (1953) The Constants in the Equation for The Atmospheric Refractive Index at Radio Frequencies. In: Proceeding of the Inst. Of Radio Engineers, 41, pp. 1035-1057.
  • Ueno, M., K. Hoshinoo, K. Matsunaga, M. Kawai, H. Nakao, and R.B. Langley, (2001). “Assessment of Atmospheric Delay Correction Models for the Japanese MSAS.” Proceedings of ION GPS 2001, 14th International Technical Meeting of the Satellite Division of The Institute of Navigation, Salt Lake City, UT, 11-14 September 2001, pp. 2341-2350.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c10f1f69-1b32-4053-a976-4273e2f2cd5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.