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The present article discusses the process of optimizing the structure 
of artificial neural networks applied in modelling the wear of sphe-
roidal graphite cast iron (SG cast iron). The networks were trained 
using the RPROP gradient method with the application of the SNNS 
package supported by original self-developed software, which ena-
bled automatic creation, training and testing of networks with differ-
ent sizes of hidden layers. Based on the results of an analysis of 
learning process and testing a package of 625 networks, the net-
work was selected which – when modelling the process of spheroi-
dal cast iron wear – generates the slightest errors during testing. 

Słowa kluczowe: Artificial neural networks, structure optimization, wear, 
spheroidal cast iron, Stuttgart Neural Network Simulator, Resilient back-
PROPagation. 

Wstęp 
With the development of technology, machines have been sup-

porting people to an increasing extent. During operation, machine 
elements are subjected to a variety of stress, so wear and tear on 
machine elements and equipment can often be observed as a result 
of the common phenomenon of friction. It is therefore reasonable to 
strive to reduce the wear of mechanical components for both eco-
nomic and ecological reasons. For this purpose, it is necessary to 
get well acquainted with the wear mechanisms and their depend-
ence on the exploitation factors and materials used. Many re-
searchers have published papers on wear, among whom there is a 
group using advanced information technology, including artificial 
neural networks used for modelling or predicting the wear of materi-
als and machine parts [1, 2, 3].  

The dynamic development of computer hardware and software 
observed in the last quarter of a century encourages researchers to 
seek solutions to scientific issues using IT tools. Recently, a slow-
down can be observed in the hardware development of micropro-
cessors measured by the number of embedded transistors, hence 
researchers are beginning to attach increasing hopes to the devel-
opment of software algorithms [4]. Advanced IT systems play a very 
important role both in the world of science and in most branches of 
our everyday life, where they have achieved a very high level of 
integration [5]. One of the many interesting categories of IT tools 
that researchers around the world readily use are the artificial neural 
networks.  They are widely used in many fields of science, especial-
ly where research problems are complex and the available 
knowledge of their relationships is limited [6]. Since numerous wear 
mechanisms are present in technology and its intensity varies de-
pending on the operating conditions and material factors, it seems 
reasonable to use artificial neural networks in the analysis of these 
issues. Elements of transport machines, including parts of motor 
vehicles often wear out, so they are a significant group of issues 
studied [7]. Many vehicle parts are made with the use of foundry 

techniques.  For those that require higher strength parameters, 
ductile irons are used, among others. The study attempts to model 
the wear of spheroidal graphite cast iron used for camshafts, with 
the use of artificial neural networks. One of the important issues 
when using this IT tool is the selection of the network topology and 
the size of hidden layers. Too few links do not allow for proper 
modeling of the issue, and too extensive topology negatively affects 
the ability to generalize knowledge and, as a consequence, the 
results of the network operation [6]. Therefore, optimization of the 
neural network topology is a very important issue in virtually every 
application [8, 9]. This article presents a tool that allows selection of 
the optimal size of hidden layers of the constructed networks. 

1. Research data  
To properly carry out the network training/learning process, two 

separate sets of data were prepared, based on the developed re-
sults of wear tests. The first one is the so-called training set, which 
was used to teach neural networks, while using the second one 
(validation set) the correctness of the network operation was veri-
fied. It did not contain data occurring in the training set [8]. The 
training and validation data were prepared on the basis of laboratory 
results of the wear of spheroidal graphite cast iron test 
EN-GJS-900-2 used among others for camshafts of automotive 
combustion engines. The wear tests were carried out on a pin-on-
disk tribometer type T-01M which was manufactured at the Instytut 
Technologii Eksploatacji in Radom. Before starting the tests, the 
samples were heat treated to obtain their hardness within the range 
of 37 - 53 HRC. The tests were carried out with a friction node load 
of 49.05 N in the sliding speed range from 0.5 to 2 m/s. The tests 
were carried out in two variants - for oil-lubricated contact, a friction 
path of 70,000 m was selected, while for dry sliding conditions - 
2,000 m respectively. 

The wear rate was calculated using the RegKro program devel-
oped for this purpose, which determined it by linearly regressing 
small fragments of the results of wear tests as a function of the 
friction path. The results of laboratory wear tests processed by the 
RegKro program formed the basis for creating a database from 
which, after supplementing with information on the structure and 
properties of samples, a training and validation set was generated 
for experiments with artificial neural networks.  

Neural networks were taught based on eight input parameters 
taking into account operational and material features [10]. Five of 
them described the conditions of cooperation of the tested samples. 
They were, subsequently: the presence of oil, pressure, coefficient 
of friction, sliding speed, contact temperature. The other three input 
values characterized the sample material. These were: microhard-
ness of the metallic matrix, percentage of graphite area, and the 
number of graphite precipitates per 1 mm2. Linear wear rate of the 
sample material was assigned to the network output. The structure 
of the data selected for building the training and validation sets is 
shown in Table 1. 
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Tab. 1. Structure of data selected for building the training and vali-
dation sets  

Value description Type Value range Unit 

Presence of oil 

Input 

0,  1 - 

Pressure       8,4 … 1125,3 MPa 

Coefficient of friction 0,043 … 0,924 - 

Sliding speed 0,3 … 2,0 m/s 

Contact temperature 29 … 100 OC 

Microhardness of the metallic 
matrix 

390 … 760 HV 

Percentage of graphite area 6.77 … 11.66 % 

Number of graphite precipitates per 
1 mm2 

166 … 285 - 

Wear rate Output 3,62*10-11 … 1,85*10-6 - 

 
The values of each input parameter have been standardized to 

the range of 0…1 [10] according to formula 1: 
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where:  
• npi(k) – standardized value of signal at the i entry of the network 

for k-th model, 
• pi(k) – value of signal at the i entry of the network for k-th model, 
• min pi(k) – the lowest value of signal at the i entry for the whole 

set of models, 
• max pi(k) – the highest value of signal at the i entry of the network 

for the whole set of models, 
 
Due to the observed significant differences in wear rate between 

the test data in the presence of lubricant compared to dry sliding 
conditions, it was decided that its value should be log-transformed 
before standardization.  

The finished training set consisted of 746 data records, while 
the validation set contained 123 of them. After adding headers 
required by the package simulating the work of artificial neural 
networks, the data was saved to text files (*.pat). 

2. Research data  
The Stuttgart Neural Network Simulator (SNNS) software was 

chosen for creating networks, training and validating them. The 
software was created at the University of Stuttgart and then further 
developed at the University of Tubingen.  Although SNNS is charac-
terized by an obsolete user interface operating in the X-window 
(X11) environment, it has been equipped with a rich set of training 
functions.  Thanks to this, it is characterized by considerable univer-
sality and, importantly, high speed of operation. The software was 
made available free of charge under the LGPL Version 2 license. 
The authors also provided for the possibility of using SNNS software 
in batch mode bypassing the graphical user interface. Such access 
to the simulator's core allows its integration with the user's own 
software [11, 12]. For the purposes of this work, an application 
operating in a script system has been developed that allows the 
automatic creation, training and validating the neural nets of various 
sizes. The application called mkNHH1net was written using the 
Turbo Pascal programming language and compiled to executable 
form using the Free Pascal Compiler 3.0.4 software. The operation 
of the mkNHH1net program is shown schematically in Figure 1. 

 
Fig. 1. Operation scheme of mkNHH1net software and of the scripts 
generated by it  

 
When starting mkNHH1net, it was necessary to specify the pa-

rameters necessary for its operation in the command line. The first 
group of parameters determined the structure of the network by 
providing the size of the input layer as well as the minimum and 
maximum numbers of neurons in both hidden layers. The second 
group were the parameters defining the network learning process, 
such as the number of training cycles and the location of the training 
and validation set files. It was also necessary to indicate the location 
of the base script, which, after providing headers specific for suc-
cessively generated networks, was the basis for automatic creation 
of sets of scripts using the SNNS command line interface (Batch-
man and ff_bignet) and Windows (cmd). The first script (Cre-
ate_nets.bat) using the ff-bignet program included in the SNNS 
package, created successively larger and larger networks within 
previously specified size limits and saved them to files. According to 
the base script, the second script (LRNets.bat) trained and validated 
the previously created networks. The the base script included, 
among others network learning function declarations.  Freshly cre-
ated networks were initialized by randomly selecting weights in the 
range from -1 to 1. The networks prepared in this way were subject-
ed to the learning process using the data contained in the training 
examples. 

From among 33 learning functions available under the SNNS 
package, the heuristic algorithm of Riedmiller and Braun RPROP 
(Resilient backPROPagation) was selected [13]. The application of 
the RPROP method was aimed at accelerating the learning process 
compared to the basic gradient algorithms [14] (e.g. backpropaga-
tion). Under the RPROP method, changes in neuron connection 
weights are described by the relationship (2): 
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where: 

– ijk - learning factor in k-th step for weights of the links of neu-
rons i and j,  

– sgn function stands for lack of argument, 
– Wij(k) - weights of the links of neurons i and j, 
– E[W(k)] – function of target (objective) dependent on W(k) 

weight vector. 
 

The RPROP algorithm modifies the values of the learning factor 

, values in such a way that if the gradient sign was the same in the 

next two steps  increases, and it decreases when the sign was 
different. 

When calling the RPROP learning function, three parameter 
values must be entered. They were selected in accordance with the 
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suggestions from the SNNS software documentation [15] and are 
shown in Table 2. 

 
Tab. 2. Selection of the training method parameters  

Parameter Recommended values [15] Selected value 

0 - initial update-value 0 … 0.2 0,1 

MAX - limit for the maximum step size 50 50 

MIN  - minimum step size 10-4 … 10-6 10-5 

 
During learning, the weight was modified in the network in the 

topological order according to the setUpdateFunc() function de-
clared in the base script. The base script enabled the selection of 
various scenarios to complete the learning process. These were: 
execution of a given number of training cycles, achievement of the 
adopted minimum error value, no further learning progress in the 
defined number of successive training cycles. 

The network learning process progress was assessed by obser-
vation of changes in the MSE (Mean Square Error) value [16, 17] for 
the validation set in a single-exit network, calculated by SNNS 
according to the formula 3 [15]: 
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where: 
– n  – number of observations (data set amount), 
– q – number of estimated parameters (network weights), 
– SSE – value of the summary square error determined from the 

formula 4 [15]: 
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where: 
– yi(k) – calculated value of signal at exit i of the network for k-th 

validating model, 
– di(k) – required value of signal at exit i of the network for k-th 

validating model, 
– q – number of examples in the validation set. 

 
As a result of the work of programs and scripts, learned net-

works (*.net) were saved in the files. If the appropriate option was 
selected in the base script code, it was also possible to save partial-
ly learned networks successively after a defined number of learning 
cycles.  Then, in the names of network files, a segment was used 
consisting of _U characters and a four-digit number corresponding 
to the number of learning cycles (*_U????.Net).  If necessary, it was 
also possible to enable the option of saving files containing records 
from training and validation sets in connection with network re-
sponses (*.res files). During the network learning process, the ac-
cumulative and mean squared error values for the training and 
validation sets were recorded. Information about the learning pro-
cess was recorded in text files (*.log). The LRNets.bat script also 
included instructions that enabled the accurate measurements of 
the learning time of each network. Collective final results of learning 
outcomes for all the networks analysed in a given network scenario 
were also saved to a text file (*.fin). The type of text files was cho-
sen due to the ease of their implementation in the scripts of the 
SNNS package and the operating system console. The internal 
organization of the files has been optimized to facilitate their further 
analysis with external tools in the form of a spreadsheet or a  
Gnuplot package which was chosen due to the possibility of analyz-
ing and creating 3D charts even with a very large amount of data 
being processed. 

3. Result analysis 
Using the mkNHH1net program, a set of 625 networks was cre-

ated with two hidden layers of all possible combinations of sizes 
from 1 ... 25 neurons in each layer. Thanks to the generated scripts, 
these networks were subjected to an automatic training and validat-
ing process. Modern computers have considerable computing pow-
er, thanks to which properly optimized software can achieve a signif-
icant speed of operation. The SNNS package, especially when 
launched in batch processing mode, without the necessity to emu-
late the X-Window graphic environment, conducted calculations for 
the trained networks at a satisfactory speed. Performing 100 learn-
ing cycles for the largest of the examined networks, having 25 neu-
rons in two hidden layers, took less than one second.  Therefore, 
with such efficient tools, it is possible to optimize the selection of the 
network structure with the method known as "brute force", i.e. 
checking all possible combinations. Initially, it was decided to train 
all networks through a predetermined number of cycles, and then 
compare their test results. Due to the nature of the experiment 
consisting in optimizing the size of two layers, it was decided to 
present the results in the form of maps on which the colors corre-
spond to the values of the obtained test error. To better illustrate the 
dependence of network test results on their structure and to reduce 
the noise of results, a smoothing algorithm embedded in the 
Gnuplot package was used, based on the exponential function.  In 
addition, the dgrid3d function was used to smooth the edges, which 
allows oversampling of any data and arranging them in the form of a 
map. Such mathematical operations allowed better visibility of ex-
tremes in the areas of test error graphs. Preliminary analysis of the 
course of changes in the network error value during learning ena-
bled the determination of the number of training cycles. During the 
learning process, the values decrease of errors generated by the 
network for both the training and testing set. However, after exceed-
ing a certain number of training cycles, the test error stops decreas-
ing and may even increase. This is usually the premise for ending 
the network learning process.  The networks generated in the dis-
cussed experiment showed this behavior. Examples of results of the 
learning process of the obtained network set are shown in Figure 2. 

It shows that the structure and the number of training cycles 
have a noticeable impact on the results of training of artificial neural 
networks. Due to the properties of the RPROP learning algorithm, to 
achieve satisfactory results it is enough to calculate with the simula-
tor fewer than 100 training cycles. From the input layer, the data 
goes to the first hidden layer. In the issue under consideration, the 
number of neurons in this layer cannot be too low. All the tested 
networks with the first hidden layer containing less than 6 - 7 neu-
rons show large testing errors. The best results are achieved by 
networks with more than 10 neurons (14 ... 17) in this layer. The 
sizes of the second hidden layer also have a significant impact on 
network training outcomes. The most efficient were the networks 
with a not very developed second hidden layer, with a number of 
neurons higher than 5 - 6. Increasing this number above 10 - 11 
leads to a rapid deterioration of the network test results for virtually 
all cases studied. It should be emphasized that excessive expan-
sion of the second hidden layer leads to worse results than with a 
small number of neurons in this layer. The best parameters for 
training a given number of cycles from among the tested networks 
were achieved by those with a structure close to 8-14-8-1. 

Training networks of different sizes usually requires individual 
selection of the right number of training cycles. When the weights of 
the neuron links are optimally selected during this process, the 
further training is slow, which results in minor changes in error 
values in subsequent cycles. This fact was used in the structure of 
the base script, thanks to which it was possible to finish the training 
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process after detecting in ten consecutive cycles test error changes 
that were smaller than the set relative value. With this algorithm, 
each network was trained for exactly the number of cycles as need-
ed to achieve the best learning process result for it. The results of 
such an experiment are shown in Figure 3. 

 

 
Fig 3. Number of training cycles until the complete training of the 
networks of various sizes 

 
 For better readability, in addition to the color map, a series of 

data in the form of a three-dimensional surface was marked on it. 
Figure 3 shows that networks with a poor first and second hidden 
layer quickly stop learning because they are unable to model the 
issue under consideration. The presented graph shows several local 
maxima, one of which corresponds to the network structures that 
achieve the smallest errors in the learning process. 

At the next stage of the analysis, the results of network testing 
of the trained network packet 625 were made, as presented in 
Figure 4a. Placing the contour lines on the graph (Fig. 4b) made the 
sought area of network structures with the lowest testing error more 
clearly visible. It corresponds to networks with 17-18 neurons in the 
first hidden layer and nine in the second one. Due to the contour 
line extension along the x axis, it can be assumed that the selection 

of the size of the first hidden layer leaves more freedom. However, 
the change in the number of neurons in the second hidden layer 
more strongly affects the results of network testing. 

In addition to the error evaluation for the test set, an analysis of 
the final learning error of the network set 625 was made. Its results 
are shown in Figure 5. The relationships obtained are similar to 
those previously discussed. It can be seen that due to the learning 
results themselves, the optimal size of the first hidden layer is 19 
neurons. However, such a network has a slightly worse ability to 
generalize knowledge acquired in the learning process, as indicated 
by the results of the error obtained for the examples contained in 
the validation set. For the problem of wear of spheroidal graphite 
cast iron modeling analyzed in the paper, the optimal topology of 
the artificial neural network is 8-18-9-1. It is characterized by the 
lowest testing error (Fig. 4b). 

Conclusions 
Based on the conducted research, the following conclusions 

have been formulated: 
– The use of a well-documented package simulating the work of 

artificial neural networks, which has an open architecture, allows 
to design individual applications supporting the optimization of 
the network topology. 

– Performance of modern computers allows the convenient use of 
tools optimizing the topology of artificial neural networks model-
ing the wear of spheroidal graphite cast iron based on the crea-
tion, learning and analysis of the operation of ever larger net-
works. 

– It is advisable to use an algorithm that individually selects the 
number of training cycles for networks with different topologies. 
Choosing this variant of the base script allowed to obtain net-
works generating the smallest testing errors.  

– Application of the proprietary tool allowed to find the optimal 
topology of the neural network for modeling the studied wear of 
spheroidal graphite cast iron. The first hidden layer should con-
sist of 18 neurons and the second one - of nine. 

– Considering the results of network testing, a narrower tolerance 
field occurs in the selection of the sizes of the second hidden 
layer. Its excessive expansion leads to a significant increase of 
error in wear modeling. 

 
Fig. 2.  Testing error of the analyzed networks after passing the determined number of training cycles 
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Optymalizacja doboru struktury sztucznych sieci neuronowych 
w modelowaniu zużycia żeliwa sferoidalnego  

na samochodowe wałki rozrządu 

W pracy przedstawiono proces optymalizacji struktury sztucznych 
sieci neuronowych użytych do modelowania zużycia żeliwa sferoi-
dalnego. Sieci uczono metodą gradientową RPROP przy użyciu 
pakietu SNNS wspomaganego autorskim oprogramowaniem, które 
umożliwiało automatyczne tworzenie, uczenie i testowanie sieci o 
różnych wielkości warstw ukrytych. Na podstawie analizy wyników 
procesu uczenia i testowania pakietu 625 sieci dobrano tę, która 
modelując proces zużycia żeliwa sferoidalnego generuje najmniej-
sze błędy podczas testowania. 

Słowa kluczowe: Sztuczne sieci neuronowe, optymalizacja struktury, 
zużycie, żeliwo sferoidalne, Stuttgart Neural Network Simulator, Resilient 
backPROPagation. 
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