PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Organic geochemical study of the Lower Miocene Kremna Basin, Serbia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Kremna Basin is located in southwest Serbia, in the Zlatibor area, which is part of the Internal Dinarides. This basin is noteworthy because of the type of bedrock drainage, which it represents. It was formed on ultrabasic rocks and volcanic materials that influenced the occurrence of organic matter (OM) in the basin fill. The objective of the study was to determine the organic geochemical characteristics of sediments from the central part of the Kremna Basin. The sediments studied belong to an intrabasinal facies, in which two sequences were distinguished. The lower sequence occurs at depths of 216–343 m, while the upper sequence is found from 13.5–216 m. At the start of basin development (265–343 m) sedimentation took place in shallow alkaline water, rich in Mg ions. Through time, a slight deepening of the basin occurred. This was followed by chemical deposition of carbonates (216–265 m). The most important change in the sedimentary environment occurred with the formation of sediments marking the transition between the sequences (at about 200 m). Sediments from the lower sequence are characterized by the dominance of dolomite and magnesite. There are indications of volcanic activity, i.e. tuff layers and the presence of searlesite. The upper sequence is characterized by the prevalence of calcite and dolomite. The amounts of MgO, Na2O and B are higher in the lower sequence, whereas the CaO content is higher in the upper sequence. The sediments contain different amounts of immature OM (late diagenesis). Biomarker analysis shows diverse precursors of the sedimentary OM: methanogenic archaea, photosynthetic green sulfur bacteria (Chlorobiaceae), bacterivorous ciliates, various bacteria, both photosynthetic and non-photosynthetic, the green unicellular microalga, Botryococcus braunii race A (exclusively in the upper sequence) and terrestrial plants. The lower sequence contains lower amount OM, composed primarily of kerogen II/III and III types, indicating a higher contribution of the allochtonous biomass of land plants from the lake catchment, particularly in the lower part. The sediments of the upper sequence are enriched in autochthonous aquatic OM, which comprises mostly kerogen I, I/II and II types. The transition from the lower sequence to the upper one is associated with a decrease in pristane to phytane ratio, gammacerane index and content of C28 steroids, absence or significantly lower amount of squalane, absence of C24 and C25 regular isoprenoids, 8-methyl-2-methyl-2-(4,8,12-trimethyltridecyl) chroman and C30 hop-17(21)-ene. Pyrolytic experiments showed that the sediments of the upper sequence, rich in aquatic OM, at a catagenetic stage could be a source of liquid hydrocarbons. The values of hopane, sterane and phenanthrene maturation parameters indicate that through pyrolysis at 400°C the samples investigated reached a value of vitrinite reflectance equivalent of approximately 0.70%. It was estimated that the sediments should be found at depths of 2300–2900 m in order to become active source rocks. The calculated minimum temperature, necessary for catagenetic hydrocarbon generation, is between 103 and 107°C.
Rocznik
Strony
185--212
Opis fizyczny
Bibliogr. 104 poz., rys., tab., wykr.
Twórcy
  • University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
  • University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
autor
  • University of Belgrade, Faculty of Mining and Geology, Djušina 7, 11000 Belgrade, Serbia
  • University of Belgrade, Center of Chemistry, IChTM, Studentski trg 12-16, 11000 Belgrade, Serbia
  • University of Belgrade, Center of Chemistry, IChTM, Studentski trg 12-16, 11000 Belgrade, Serbia
autor
  • Rio Tinto - Rio Sava Exploration, Takovska 45, 11000 Belgrade, Serbia
  • RWTH Aachen University, Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr
autor
  • University of Belgrade, Faculty of Mining and Geology, Djušina 7, 11000 Belgrade, Serbia
  • University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
autor
  • University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
Bibliografia
  • 1. Alexander, R., Kagi, R. I., Rowland, S. J., Sheppard, P. N. & Chirila, T. Y., 1985. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethyl naphthalenes in some ancient sediments and petroleums. Geochimica et Cosmochimica Acta, 49: 385-395.
  • 2. Alonso, R. N., 1999. On the origin of La Puna Borates. Acta Geológica Hispánica (Geológica Acta), 34: 141-166.
  • 3. Banerjee, A., Sharma, R., Chisti, Y. & Banerjee, U. C., 2002. Botryococcus braunii: a renewable source of hydrocarbons and other Chemicals. Critical Reviews in Biotechnology, 22: 245-279.
  • 4. Barker, C. E. & Pawlewicz, M. J., 1994. Calculation of vitrinite reflectance from thermal histories and peak temperatures. a comparison of methods. In: Mukhopadhyay, P. K. & Dow, W. G. (eds), Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations. American Chemical Society, Washington, D.C., pp. 216-222.
  • 5. Bohacs, K. M., Carroll, A. R. & Neal, J. E., 2003. Lessons from large lake systems-Thresholds, nonlinearity, and strange attractors. In: Chan, M. A. & Archer, A. W. (eds), Extreme Depositional Environments: Mega End Members in Geologie Time. Geological Society of America Special Papers, 370: 75-90.
  • 6. Bohacs, K. M., Carroll, A. R., Neal, J. E. & Mankiewicz, P. J., 2000. Lake-basin type, source potential, and hydrocarbon character: an integrated sequence stratigraphic geochemical framework. In: Gierlowski-Kordesch, E. H. & Kelts, K. R. (eds), Lake Basins through Space and Time. AAPG Studies in Geology, 46: 3-34.
  • 7. Bottari, F., Marsili, A., Morelli, I. & Pacchiani, M., 1972. Aliphatic and triterpenoid hydrocarbons from ferns. Phytochemistry, 11: 2519-2523.
  • 8. Brassell, S. C., Comet, P. A., Eglinton, G., Isaacson, P. J., McEvoy, J., Maxwell, J. R., Thompson, I. D., Tibbetts, P. J. & Volkman, J. K., 1980. The origin and fate of lipids in the Japan Trench. In: Douglas, A. G. & Maxwell, J. R. (eds.), Advances in Organic Geochemistry 1979. Pergamon Press, Oxford, pp. 375-392.
  • 9. Bray, E. E. & Evans, E. D., 1961. Distribution of n-paraffins as a clue to the recognition of source beds. Geochimica et Cosmochimica Acta, 22: 2-15.
  • 10. Budinova, T., Huang, W.-L., Racheva, I., Tsyntsarski, B., Petrova, B. & Yardim, M. F., 2014. Investigation of kerogen transformation during pyrolysis by applying a diamond anvil cell. Oil Shale, 31: 121-131.
  • 11. Chaffee, A. L., Hoover, D. S., Johns, R. B. & Schweighard, F. K., 1986. Biological markers extractable from coal. In: Johns, R. B. (ed.), Biological Markers in the Sedimentary Record. Elsevier, Amsterdam, pp. 311-345.
  • 12. Cranwell, P. A., Eglinton, G. & Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments. Organic Geochemistry, 11: 513-527.
  • 13. Dedić, Lj., 1978. Pojave magnezita u tercijarnom basenu Kremne. In: Cicić, S. (ed.), Zbornik radova, IX Kongres geologa Jugoslavije, Sarajevo, 2-7 oktobar 1978. Publisher (izdavac), Organizacioni odbor IX kongresa geologa Jugoslavije, Sarajevo, October, 1978, pp. 723-726. [In Serbian.]
  • 14. Derenne, S., Largeau, C., Casadevall, E. & Connan, J., 1988. Comparison of torbanites of various origins and evolutionary stages. Bacterial contribution to their formation. Causes of the lack of botryococcane in biiumens. Organic Geochemistry, 12: 43-59.
  • 15. Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglinton, G., 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272: 216-222.
  • 16. Dimitrijević, M. D. (ed.), 2000. Geološki Atlas Srbije 1:2 000 000 (Br. 14). Metalogenetska karta i karta rudnih formacija. Izdavac, Ministarstvo rudarstva i energetike Republike Srbije, Beograd. [In Serbian.]
  • 17. Dragaš, M., Opić, I. & Britvić, V., 1991. Temperature distribution analysis in INA - Naftaplin’s exploration provinces based on the temperature measurings. Nafta, 42: 383-398. [In Croatian, with English summary.]
  • 18. Eremija, M., 1977. Kremanski basen. In: Petković, K. (ed.), Geo- logija Srbije - II/3 - stratigrafija, kenozoik. Zavod za regionalnu geologiju i paleontologiju, Belgrade, pp. 278-279. [In Serbian.]
  • 19. Espitalié, J., Deroo, G. & Marquis, F., 1985. La pyrolyse RockEval et ses applications. Premiere partie. Revue de l’Institut Franęais du Pétrole, 40: 563-579.
  • 20. Floyd, P. A., Helvaci, C. & Mittwede, S. K., 1998. Geochemical discrimination of volcanic rocks associated with borate deposits: an exploration tool? Journal of Geochemical Exploration, 60: 185-205.
  • 21. Golovko, A. K., 1997. Neftyanie alkilaromaticheskie uglevodorodi. Ph. D. Thesis, University of Tomsk, Russia, 352 pp. [In Russian.]
  • 22. Grice, K., Schouten, S., Nissenbaum, A., Charrach, J. & Sinninghe Damsté, J., 1998a. Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom Formation, Dead Sea Basin, Israel. Organic Geochemistry, 28: 349-359.
  • 23. Grice, K., Schouten, S., Peiers, K. E. & Sinninghe Damsté, J., 1998b. Molecular isotopic characterization of hydrocarbon biomarkers in Palaeocene-Eocene evaporitic lacustrine source rocks from the Jianghan Basin, China. Organic Geochemistry, 29: 1745-1764.
  • 24. Hughes, W. B., Holba, A. G. & Dzou, L. I. P., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta, 59: 3581-3598.
  • 25. Huizinga, B. J., Aizenshtat, Z. A. & Peiers K. E., 1988. Proigrammed pyrolysis-gas chromatography of artificially matured Green River kerogen. Energy Fuels, 2: 74-81.
  • 26. Ilić, A. & Neubauer, F., 2005. Teritary to recent oblique convergence and wrenching of the Central Dinarides: Constraints from a palaeostress study. Tectonophysics, 410: 465-484.
  • 27. Ilić, M., 1969. Rezultati nekih novih istraživanja ležišta magnezita u okolini Raške. Zbornik Radova Rudarsko-Geološkog Fakulteta, 11/12: 89-127. [In Serbian.]
  • 28. Ilić, M. M. & Rubežanin, D., 1978. O genezi magnezitskih ležišta zlatiborskog ultrabazitskog masiva. In: Cicić, S. (ed.), Zbornik radova, IX Kongres geologa Jugoslavije, Sarajevo, 2-7 oktobar 1978. Publisher (izdavac), Organizacioni odbor IX kongresa geologa Jugoslavije, Sarajevo, October 1978, pp. 539-554. [In Serbian.]
  • 29. Ishiwatari, R. & Fukushima, K., 1979. Generation of unsaturated and aromatic hydrocarbons by thermal alteration of young kerogen. Geochimica et Cosmochimica Acta, 43: 1343-1349.
  • 30. Jovancićević, B., Wehner, H., Scheeder, G., Stojanović, K., Šajnović, A., Cvetković, O., Ercegovac, M. & Vitorović, D., 2002. Search for source rocks of the crude oils of the Drmno depression (southern part of the Pannonian Basin, Serbia). Journal of the Serbian Chemical Society, 67: 553-566.
  • 31. Kemp, P., Lander, D. J. & Orpin, C. G., 1984. The lipids of the rumen fungus Piromonas communis. Journal of General Microbiology, 130: 27-37.
  • 32. Kleeman, G., Poralla, K., Englert, G., Kjosen, H., Liaaen-Jensen, N., Neunlist, S. & Rohmer, M., 1990. Tetrahymanol from the phototrophic bacierium Rhodopseudonomas palustris: First report of a gammacerane triterpane from a prokaryote. Journal of General Microbiology, 136: 2551-2553.
  • 33. Kluska, B., Rospondek, M. J., Marynowski, L. & Schaeffer, P., 2013. The Werra cyclotheme (Upper Permian, Fore-Sudetic Monocline, Poland): Insights into fluciuaiions of the sedimentary environment from organic geochemical studies. Applied Geochemistry, 29: 73-91.
  • 34. Koopmans, M. P., de Leeuw, J. W. & Sinninghe Damsté, J. S., 1997, Novel cyclised and aromatised diagenetic products of ß-carotene in the Green River Shale. Organic Geochemistry, 26: 451-466.
  • 35. Koopmans, M. P., Köster, J., van Kaam-Peters, H. M. E., Kenig, F., Schouten, S., Hartgers, W. A., de Leeuw, J. W. & Sinninghe Damsté, J. S., 1996a. Diagenetic and catagenetic products of isorenieratene: Molecuiar indicaiors for photic zone amoxia. Geochimica et Cosmochimica Acta, 60: 4467-4496.
  • 36. Koopmans, M. P., Schouten, S., Kohnen, M. E. L. & Sinninghe Damsté, J. S., 1996b. Restricted utility of aryl isoprenoids as indicators for photic anoxia. Geochimica et Cosmochimica Acta, 60: 4873-4876.
  • 37. Kostić, A., 2010. Thermal evolution of organic matter and petroleum generation modelling in the Pannonian Basin (Serbia). University of Belgrade, Faculty of Mining and Geology & “Planeta print”, Belgrade, 150 pp. [In Serbian, with English summary.]
  • 38. Kovacević, M., 1998. Sepiolite and Palygorskite Clay in Serbia. In: Sućur, M. (ed.), Proceedings of the13th Congress of Yugoslav Geologists, Herceg Novi, October 6-9, 1998. Published by the Geological Society of Montenegro, pp. 753-763. [In Serbian, with English summary.]
  • 39. Krstić, N., Dumadžanov, N., Olujić, J., Vujanović, L. & Janković- Golubović, J., 2001. Interbedded tuff and bentonite in the Neogene lacustrine sediments of the central part of the Balkan Peninsula. Areview. Acta Vulcanologica, 13: 91-99.
  • 40. Lafargue, E., Marquis, F. & Pillot, D., 1998. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l'Institut Franęais du Pétrole, 53: 421-437.
  • 41. Langford, F. F. & Blanc-Yalleron, M. M., 1990. Interpreting Rock-Eval pyrolysis data using graphs of pyrolyzable hydrocarbons vs. total organic carbon. American Association of Petroleum Geologists Bulletin, 74: 799-804.
  • 42. Mackie, A. Y. E., Leng, J. M., Lloyd, M. J. & Arrowsmith, C., 2005. Bulk organic ö13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. Journal of Quaternary Science, 20: 303-312.
  • 43. Maksimović, Z., 1996. Alteration of ultramafic rocks of Zlatibor. In: Dimitrijević, M. D. (ed.), Geology of Zlatibor. Geoinstitute Special Publication, 18: 39-40.
  • 44. Marović, M., Djoković, I., Peštó, L., Radovanović, S., Toljić, M. & Gerzina, N., 2002. Neotectonics and seismicity of the southern margin of the Pannonian basin in Serbia. EGU Stephan Mueller Special Publication Series, 3: 277-295.
  • 45. Marović, M., Krstić, N., Stanić, S., Cvetković, Y. & Petrović, M., 1999. The evolution of Neogene sedimentation provinces of Central Balkan Peninsula. Bulletin of Geoinstitute, 36: 25-94. [In Serbian, with English summary.]
  • 46. Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114: 289-302.
  • 47. Meyers, P. A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Organic Geochemistry, 27: 213-250.
  • 48. Meyers, P. A. & Ishiwatari, R., 1993. The early diagenesis of organic matter in lacustrine sediments. In: Engels, M. H. & Macko, S. A. (eds), Organic Geochemistry: Principles and Applications. Plenum Press, NewYork, pp. 185-209.
  • 49. Mojsilović, S., Baklaić, D. & Boković, I., 1973. Basic Geological Map of SFRJ, Užice Sheet, Scale 1:100000. Savezni geološki zavod, Beograd.
  • 50. Moldowan, J. M., Seifert, W. K. & Gallegos, E. J., 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin, 69: 1255-1268.
  • 51. Mrkić, S., Stojanović, K., Kostić, A., Nytoft, H. P. & Sajnović A., 2011. Organic geochemistry of Miocene source rocks from the Banat Depression (SE Pannonian Basin, Serbia). Organic Geochemistry, 42: 655-677.
  • 52. Neto, E. Y. D. S., Hayes, J. M. & Takaki, T., 1998. Isoiopic biogeochemistry of the Neocomian lacustrine and Upper Aptian marine-evaporitic sediments of the Potiguar Basin, North-eastern Brazil. Organic Geochemistry, 28: 361-381.
  • 53. Neunlist, S. & Rohmer, M., 1985. Novel hopanoids from the methylotrophic bacteria Methylococcus capsulatus and Me- thylomonas methanica. (22S)-35-aminobacteriohopane- 30,31,32,33,34-pentol and (22S)-35-amino-3ß-methylbac- teriohopane-30,31,32,33,34-pentol. Biochemical Journal, 231: 635-639.
  • 54. Obradović, J., Burdević-Colson, J., Yasić, N., Radaković, A., Grubin, N. & Potkonjak, B., 1994. Carbonates from Neogene lacustrine basins of Serbia - geochemical characteristics. Annales Géologiques de la Péninsule Balkanique, 56: 177199. [In Serbian, with English summary.]
  • 55. Obradović, J., Nosin, Y., Yasić, N. & Grubin, N., 1995. Contribution to the knowledge of the isotopic composition of carbonates from lacustrine basins of Serbia. Collection of papers of the Faculty of Mining and Geology, 57: 3-11. [In Serbian, with English summary.]
  • 56. Obradović, J. & Yasić, N., 2007. Jezerski baseni u Neogenu Srbije. Srpska Akademija nauka i umetnosti, posebna izdanja, Odeljenje za matematiku, fiziku i geo-nauke, Knjiga 3, Belgrade, 310 pp. [In Serbian.]
  • 57. Obradović, J., Yasić, N., Bordević-Colson, J. & Grubin, N., 1996. Tertiary lacustrine basins of the Zlatibor complex. In: Dimitrijević, M. D. (ed.), Geology of Zlatibor, Geoinstitute Special Publication, Belgrade, 18: 97-104.
  • 58. Ourisson, G., Albrecht, P. & Rohmer, M., 1979. The hopanoids: palaeo-chemistry and biochemistry of a group of natural products. Pure and Applied Chemistry, 51: 709-729.
  • 59. Pantić, N., 1956. Biostratigrafija tercijarne flore Srbije. Annales Géologiques de la Péninsule Balkanique, 24: 199-321. [In Serbian.]
  • 60. Parsi, Z., Hartog, N., Górecki, T. & Poerschmann, J., 2007. Analytical pyrolysis as a tool for the characterization of natural organic matter - A comparison of different approaches. Journal of Analytical and Applied Pyrolysis, 79: 9-15.
  • 61. Peters, K. E., Walters, C. C. & Moldowan, J. M., 2005. The Biomarker Guide, Volume 2: Biomarkers and Isotopes in the Petroleum Exploration and Earth History. Cambridge University Press, Cambridge, 475-1155 pp.
  • 62. Philp, R. P., 1985. Fossil Fuel Biomarkers: Applications and Spectra. Methods in Geochemistry and Geophysics. Elsevier, Amsterdam, 294 pp.
  • 63. Platt, N. H. & Wright, Y. P., 1991. Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. In: Anadón, P., Cabrera, L. & Kelts, K (eds), Lacustrine Facies Analysis. International Association of Sedimentologists Special Publication, 13: 57-74.
  • 64. Prysjazhnjuk, Y., Kovalenko, Y. & Krstić, N., 2000. On the terres-trial and freshwater mollusks from Neogene of Western Serbia. In: Karamata, S. & Janković, S. (eds), Geology and Metallogeny of the Dinarides and the Vardar zone. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, pp. 219-224. [In Serbian, with English summary.]
  • 65. Radke, M., 1987. Organic geochemistry of aromatic hydrocarbons. In: Radke, M. (ed.), Advances in Petroleum Geochemistry. Academic Press, London, pp.141-205.
  • 66. Radke, M. & Welte, D. H., 1983. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. In: Bjorřy, M., Albrecht, P., Cornford, C., de Groot, K., Eglinion, G., Galimov, E., Leythaeuser, D., Pelet, R., Rullkötter, J. & Speers, G. (eds), Advances in Organic Geochemistry 1981. John Wiley & Sons Limited, Chichester, pp. 504512.
  • 67. Radke, M., Welte, D. H. & Willsch, H., 1982a. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochimica et Cosmochimica Acta, 46: 1-10.
  • 68. Radke, M., Willsch, H., Leythaeuser, D. & Teichmüller, M., 1982b. Aromatic components of coal: relation of distribution pattern to rank. Geochimica et Cosmochimica Acta, 46: 1831-1848.
  • 69. Risatti, J. B., Rowland, S. J., Yon, D. A. & Maxwell, J. R., 1984. Stereochemical studies of acyclic isoprenoids- XII. Lipids of methanogenic bacteria and possible contributions to sediments. Organic Geochemistry, 6: 93-103.
  • 70. Rohmer, M., Bisseret, P. & Neunlist, S., 1992. The hopanoids, prokaryotic triterpenoids and precursors of ubiquitous molecular fossils. In: Moldowan, J. M., Albrecht, P. & Philp, R. P. (eds), Biological Markers in Sediments and Petroleum. Prentice Hall, Englewood Cliffs, NJ, pp. 1-17.
  • 71. Schouten, S., Van der Maarel, M. J. E. C., Huber, R. & Sinninghe Damsté, J. S., 1997. 2,6,10,15,19-Pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon, and in Methanosarcina mazei. Organic Geochemistry, 26: 409-414.
  • 72. Schwark, L., Vliex, M. & Schaeffer, P., 1998. Geochemical characterization of Malm Zeta laminated carbonates from the Franconian Alb, SW-Germany (II). Organic Geochemistry, 29: 1921-1952.
  • 73. Shanmugam, G., 1985. Significance of coniferous rain forests and related oil, Gippsland Basin, Australia. American Association of Petroleum Geologists Bulletin, 69: 1241-1254.
  • 74. Sheppard, R. & Gude, A., 1973. Boron-bearing potassium feldspar of authigenic origin closed-basin deposits. U.S. Geological Survey Journal of Research, 1: 377-382.
  • 75. Sinninghe Damsté, J. S., Keely, B. J., Betts, S. E., Baas, M., Maxwell, J. R. & de Leeuw, J. W., 1993. Variations in abundances and disiribuiions of isoprenoid chromans and longchain alkylbenzenes in sediments of the Mulhouse Basin: a molecular sedimentary record of palaeosalinity. Organic Geochemistry, 20: 1201-1215.
  • 76. Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M. & de Leeuw, J. W., 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et CosmochimicaActa, 59: 1895-1900.
  • 77. Sinninghe Damsté, J. S., Kock-Van Dalen, A. C., de Leeuw, J. W., Schenck, P. A., Guoying, S. & Brassell, S. C., 1987. The identification of mono-, di-and tri-methyl 2-methyl-2- (4,8,12-trimethyltridecyl)chromans and their ociurience in the geosphere. Geochimica et Cosmochimica Acta, 51: 2393-2400.
  • 78. Sinninghe Damsté, J. S., Rijpstra, I., de Leeuw, J. W. & Schenck, P. A., 1989. The occurrence and identification of series of organic sulfur compounds in oils and sediment exiracts. II. Their presence in samples from hypersaline and non-hypersaline palaeoenvironmental and maturity indicators. Geochimica et Cosmochimica Acta, 53: 1323-1341.
  • 79. Stamatakis, M. G., 1989. A boron-bearign potassium feldspar in volcanic ash and tuffaceous rocks from Miocene lake deposits, Samos Island, Greece. American Mineralogist, 74: 230235.
  • 80. Stojanović, K., Jovancićević, B., Šajnovm, A., Sabo, T., Vitorović, D., Schwarzbauer, J. & Golovko, A., 2009. Pyrolysis and Pt(IV)- and Ru(III)-ion catalyzed pyrolysis of asphaltenes in organic geochemical investigation of a biodegraded crude oil (Gaj, Serbia). Fuel, 88: 287-296.
  • 81. Stojanović, K., Jovancićević, B., Vitorović, D., Pevneva, G., Golovko, J. & Golovko, A., 2007. New maturation parameiers based on naphthaiene and phenanthrene isomerization and dealkylation processes aimed at improved classification of crude oils (Southeastern Pannonian Basin, Serbia). Geochemistry International, 45: 781-797.
  • 82. Stojanović, K., Šajnovtó, A., Sabo, T., Golovko, A. & Jovancićević, B., 2010. Pyrolysis and Catalyzed Pyrolysis in the Investigation of a Neogene Shale Potential from Valjevo- Mionica Basin, Serbia. Energy & Fuel, 24: 4357-4368.
  • 83. Suggate, R. P., 1998. Relations between depth of burial, vitrinite reflectance and geothermal gradient. Journal of Petroleum Geology, 21: 5-32.
  • 84. Szabó, Cs., Molnár, F. & Kiss, G., 2009. Mineralogy and origin of the Piskanja borate deposit (Jarandol basin, Serbia). Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 155: 153.
  • 85. Šajnovtó, A., Simić, V., Jovancićević, B., Cvetković, O., Dimitrijević, R. & Grubin N., 2008a. Sedimentation History of Neogene Lacustrine Sediments of Sušeocka Bela Stena Based on Geochemical Parameters (Valjevo-Mionica Basin, Serbia). Acta Geologica Sinica - English Edition, 82: 1201-1212.
  • 86. Šajnovtó, A., Stojanović, K., Jovancićević, B. & Cvetković, O., 2008b. Biomarker distributions as indicators for the depositional environment of lacustrine sediments in the Valjevo- Mionica basin (Serbia). Chemie der Erde - Geochemistry, 68: 395-411.
  • 87. Šajnovtó, A., Stojanović, K., Jovancićević, B. & Golovko, A., 2009. Geochemical investigation and characterisation of Neogene sediments from Valjevo-Mionica Basin (Serbia). Environmental Geology, 56: 1629-1641.
  • 88. Šajnovtó, A., Stojanović, K., Simić, V. & Jovancićević, B., 2012. Geochemical and Sedimentation History of Neogene Lacustrine Sediments from the Valjevo-Mionica Basin (Serbia). In: Panagiotaras, D. (ed.), Geochemistry - Earth ’s System Processes. InTech, Rijeka, pp. 1-26.
  • 89. ten Haven, H. L., de Leeuw, J. W., Rullkötter, J. & Sinninghe Damsté, J. S., 1987. Restricted utility of the pristane/phytane raiio as a palaeoenvironmental indicaior. Nature, 330: 641643.
  • 90. Tucker, M. E. & Wright, V. P. 1990. Carbonate Sedimentology. 482 pp. Blackwell Scientific Publications, Oxford.
  • 91. Utescher, T., Djordjevic-Milutinovic, D., Bruch, A. & Mosbrug- ger, V., 2007. Palaeoclimate and vegetation change in Serbia during the last 30 Ma. Palaeogeography, Palaeoclimatology Palaeoecology, 253: 141-152.
  • 92. van Aarssen, B. G. K., Bastow, T. P., Alexander, R. & Kagi, R. I., 1999. Distributions of methylated naphthalenes in crude oils: indicators of maturity, biodegradation and mixing. Organic Geochemistry, 30: 1213-1227.
  • 93. Vink, A., Schouten, S., Sephton, S. & Sinninghe Damsté, J. S., 1997. A newly discovered norisoprenoid, 2,6,15,19-tetrame- thylicosane, in Cretaceous black shales. Geochimica et Cosmochimica Acta, 62: 965-970.
  • 94. Volkman, J. K., 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9: 83-99.
  • 95. Yolkman, J. K., 2003. Sterols in microorganisms. Applied Microbiology and Biotechnology, 60: 496-506.
  • 96. Yolkman, J. K., Allen, D. I., Stevenson, P. L. & Burton, H. R., 1986. Bacterial and algal hydrocarbons from a saline Antarctic lake, Ace Lake. Organic Geochemistry, 10: 671-681.
  • 97. Wang, R. & Fu, J., 1997. Yariability in biomarkers of different saline basins in China. International Journal of Salt Lake Research (Hydrobiologia), 6: 25-53.
  • 98. Waples, D. W., Haug, P. & Welte, D. H., 1974. Occurrence of a regular C25 isoprenoid hydrocarbon i Tertiary sediments representing a lagoonal-type, saline environment. Geochimica et Cosmochimica Acta, 62: 381-387.
  • 99. Wolff, G. A., Ruskin, N. & Marshal, J. D., 1992. Biogeochemistry of an early diagenetic concreiion from the Birchi Bed (L. Lias, W. Dorset, UK). Organic Geochemistry, 19: 431-444.
  • 100. Yangming, Z., Huanxin, W., Aiguo, S., Digang, L. & Dehua, P., 2005. Geochemical characteristics of Tertiary saline lacustrine oils in the Western Qaidam Basin, northwest China. Applied Geochemistry, 20: 1875-1889.
  • 101. Yawanarajah, S. R. & Kruge, M. A., 1994. Lacustrine shales and oil shales from Stellarton Basin, Nova Scotia, Canada: organofacies variations and use of polyaromatic hydrocarbons as maturity indicators. Organic Geochemistry, 21: 153-170.
  • 102. Yoshioka, H. & Ishiwatari, R., 2002. Characterization of organic matter generated from Green River shale by infrared laser pyrolysis. Geochemical Journal, 36: 73-82.
  • 103. Zander, J. M., Caspi, E., Pandey, G. N. & Mitra, C. R., 1969. The presence of tetrahymanol in Oleandra wallichii. Phytochemistry, 8: 2265-2267.
  • 104. Živkovtó, M. & Stojanović, D., 1976. Sirlezit u sedimentnom magnezitu Kremne kod Titovog Užica. Vatrostalni materijali, 6: 3-8. [In Serbian.]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c10cb0ca-eef2-41c6-9db5-4d83678868c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.