PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of resistance spot welding process quality using modal analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena jakości procesu zgrzewania punktowego za pomocą analizy modalnej
Języki publikacji
EN
Abstrakty
EN
The resistance spot welding is one of the main methods used to join thin-walled metal parts, while a number of factors adversely affect the process and thus the quality of the connections made. This article presents the study results of the possibility of applying modal analysis in the quality examination of welded parts by detecting the missing weld. It was aimed to determine this kind welding process imperfections influence on modal shapes and frequencies by the study of the dynamic properties of welded elements in the frequency domain. The research included real and numerical tests. The proposed testing method for spot welded constructions is a scientific novelty in the world, but the investigation results indicated, that the modal analysis may find application in detecting welding defects such as the lack of the welds. To assess the quality of the numerical models, the results obtained in the simulation and experimental test results were compared. The analysis involved the first five modes. The mode shapes in relation to the first five modal frequencies identified using the FEM analyses and the experimental tests was consistent with respect to element distortion. The differences indicate the satisfactory conformity of the numerical simulation results with the experimental test results. The article fundamentally demonstrates the applicability of the above-mentioned method to analyse the performance of all welds at once.
PL
Punktowe zgrzewanie oporowe jest jedną z głównych metod stosowanych do łączenia cienkościennych elementów metalowych, przy czym szereg czynników wpływa niekorzystnie na proces, a tym samym na jakość wykonanych połączeń. W artykule przedstawiono wyniki badań możliwości zastosowania analizy modalnej w analizy jakości zgrzewanych elementów w aspekcie wykrywania brakującej zgrzeiny. Celem było określenie wpływu tego typu niedoskonałości procesu zgrzewania na postać i częstotliwości drgań własnych poprzez badanie w dziedzinie częstotliwości właściwości dynamicznych elementów zgrzewanych. Badania obejmowały testy rzeczywiste i analizy numeryczne. Zaproponowana metoda badania konstrukcji zgrzewanych jest nowością naukową na świecie, a wyniki badań wskazały, że analiza modalna może znaleźć zastosowanie w wykrywaniu wad zgrzewalniczych takich jak brak zgrzein. Skuteczna weryfikacja wykonania danej zgrzeiny w zgrzewanym elemencie zależy od wielu czynników, w tym m.in. materiału i kształtu konstrukcji, lokalizacji zgrzein, miejsca wzbudzenia i pomiaru podczas jej badania. W związku z tym każda badana geometria będzie wymagać opracowania indywidualnych założeń wymuszeń i pomiaru, natomiast ogólne założenia stosowania analizy modalnej pozostają niezmienne. W celu oceny wyników modeli numerycznych, porównano wyniki uzyskane w symulacji i wyniki badań eksperymentalnych. Analiza wykazała, iż postaci drgań własnych w odniesieniu do pierwszych pięciu częstotliwości zidentyfikowanych za pomocą analiz MES i testów eksperymentalnych były zgodne pod względem odkształceń elementów. Różnice wskazują na zadowalającą zgodność wyników symulacji numerycznej z wynikami testów eksperymentalnych, a tym samym zasadne jest stosowanie MES w opracowaniu założeń do opracowania stanowiska pomiarowego konstrukcji zgrzewanych. Artykuł zasadniczo demonstruje możliwość zastosowania wyżej wymienionej metody do analizy jakości wszystkich spoin jednocześnie.
Rocznik
Strony
311--326
Opis fizyczny
Bibliogr. 43 poz., il., tab.
Twórcy
  • Łukasiewicz Research Network – Upper Silesian Institute of Technology, Gliwice, Poland
  • Łukasiewicz Research Network – Upper Silesian Institute of Technology, Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Gliwice, Poland
  • Łukasiewicz Research Network – Upper Silesian Institute of Technology, Gliwice, Poland
  • Silesian University of Technology, Institute of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Gliwice, Poland
Bibliografia
  • [1] M. Beckert, “Vor 125 Jahren wurde das Widerstandsschweißen erfunden”, Schweissen und Schneiden, vol. 54, no. 4, pp. 202-204, 2002.
  • [2] M.M. Schwartz, Metals joining manual. New York: McGraw-Hill, 1979.
  • [3] L. Peroni, M. Avalle, and G. Belingardi, “Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques”, International Journal of Impact Engineering, vol. 36, no. 3, pp. 498-511, 2009, doi: 10.1016/j.ijimpeng.2008.06.004.
  • [4] Z. Mikno, M. Stepien, and B. Grzesik, “Optimization of resistance welding by using electric servo actuator”, Welding in the World, vol. 61, no. 3, pp. 453-462, 2017, doi: 10.1007/s40194-017-0437-x.
  • [5] S. Akulwar, A. Akela, D. Satish Kumar, and M. Ranjan, “Resistance Spot Welding Behavior of Automotive Steels”, Transactions of the Indian Institute of Metals, vol. 74, no. 3, pp. 601-609, 2021, doi: 10.1007/s12666-020-02155-9.
  • [6] S. Brauser, L.A. Pepke, G. Weber, and M. Rethmeier, “Deformation behaviour of spot-welded high strength steels for automotive applications”, Materials Science and Engineering: A, vol. 527, no. 26, pp. 7099-7108, 2010, doi: 10.1016/j.msea.2010.07.091.
  • [7] A. Tavasolizadeh, S.P.H. Marashi, and M. Pouranvari, “Mechanical performance of three thickness resistance spot welded low carbon steel”, Materials Science and Technology, vol. 27, no. 1, pp. 219-224, 2011, doi: 10.1179/174328409X441265.
  • [8] J.Wippermann, et al., “Thermal influence of resistance spot welding on a nearby overmolded thermoplastic-metal joint”, Welding in the World, vol. 67, no. 3, pp. 793-804, 2023, doi: 10.1007/s40194-023-01465-y.
  • [9] W. Dai, et al., “Online quality inspection of resistance spot welding for automotive production lines”, Journal of Manufacturing Systems, vol. 63, pp. 354-369, 2022, doi: 10.1016/j.jmsy.2022.04.008.
  • [10] K. Zhou and P. Yao, “Overview of recent advances of process analysis and quality control in resistance spot welding”, Mechanical Systems and Signal Processing, vol. 124, pp. 170-198, 2019, doi: 10.1016/j.ymssp.2019.01.041.
  • [11] A. Ambroziak, R.Gr. Maev, M. Korzeniowski, P. Kustroń, and A.M. Chertov, “Real-time ultrasonic control of spotwelded steel joints”, Welding International, vol. 25, no. 6, pp. 419-423, 2011, doi: 10.1080/09507111003655234.
  • [12] Y. Ma, P. Wu, C. Xuan, Y. Zhang, and H. Su, “Review on Techniques forbOn-Line Monitoring of Resistance Spot Welding Process”, Advances in Materials Science and Engineering, vol. 2013, art. no. 630984, 2013, doi: 10.1155/2013/630984.
  • [13] D. Zhao, Y. Wang, Z. Lin, and S. Sheng, “An effective quality assessment method for small scale resistance spot welding based on processnparameters”, NDT & E International, vol. 55, pp. 36-41, 2013, doi: 10.1016/j.ndteint.2013.01.008.
  • [14] Y.-J. Xia, Z.-W. Su, Y.-B. Li, L. Zhou, and Y. Shen, “Online quantitative evaluation of expulsion in resistance spot welding”, Journal of Manufacturing Processes, vol. 46, pp. 34-43, 2019, doi: 10.1016/j.jmapro.2019.08.004.
  • [15] A. Pilarczyk, “Uchwyt elektrody stacjonarnej zgrzewarki punktowej z pomiarem siły docisku elektrod”, PL patent no. P.342306, 2007.
  • [16] A. Ambroziak, R.G. Maev, M. Korzeniowski, and P. Kustroń, “Ultrasonic quality control methods for spot-welded joints”, Welding International, vol. 25, no. 12, pp. 927-932, 2011, doi: 10.1080/09507116.2010.540846.
  • [17] Ó. Martín, M. Pereda, J.I. Santos, and J.M. Galán, “Assessment of resistance spot welding quality based on ultrasonic testing and tree-based techniques”, Journal of Materials Processing Technology, vol. 214, no. 11, pp. 2478-2487, 2014, doi: 10.1016/j.jmatprotec.2014.05.021.
  • [18] M. Ferraioli, “A modal pushdown procedure for progressive collapse analysis of steel frame structures”, Journal of Constructional Steel Research, vol. 156, pp. 227-241, 2019, doi: 10.1016/j.jcsr.2019.02.003.
  • [19] W. Kowalski, M. Richter, and K. Tokarczyk, “Effect of icing as a non-structural mass on the variation of natural frequency of a lightweight lattice structure”, Archives of Civil Engineering, vol. 69, no. 4, pp. 37-53, 2023, doi: 10.24425/ace.2023.147646.
  • [20] D. Bysiec and T. Maleska, “Numerical Analysis of Steel Geodesic Dome under Seismic Excitations”, Materials, vol. 14, no. 16, art. no. 4493, 2021, doi: 10.3390/ma14164493.
  • [21] M. Sokol, M. Venglár, K. Lamperová, and M. Márföldi, “Performance Assessment of a Renovated Precast Concrete Bridge Using Static and Dynamic Tests”, Applied Sciences, vol. 10, no. 17, art. no. 5904, 2020, doi: 10.3390/app10175904.
  • [22] B. Chung, J. Kim, D. Jang, S. Kim, and Y. Choi, “Experimental investigation of a method for diagnosing wall thinning in an artificially thinned carbon steel elbow based on changes in modal characteristics”, Nuclear Engineering and Technology, vol. 55, no. 3, pp. 947-957, 2023, doi: 10.1016/j.net.2022.11.001.
  • [23] F. N. Kudu, Ş. Uçak, G. Osmancikli, T. Türker, and A. Bayraktar, “Estimation of damping ratios of steel structures by Operational Modal Analysis method”, Journal of Constructional Steel Research, vol. 112, pp. 61-68, 2015, doi: 10.1016/j.jcsr.2015.04.019.
  • [24] U. Radoń, P. Zabojszcza, and M. Sokol, “The Influence of Dome Geometry on the Results of Modal and Buckling Analysis”, Applied Sciences, vol. 13, no. 4, art. no. 2729, 2023, doi: 10.3390/app13042729.
  • [25] D. Feng and M. Q. Feng, “Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection – A review”, Engineering Structures, vol. 156, pp. 105-117, 2018, doi: 10.1016/j.engstruct.2017.11.018.
  • [26] H. Wang, A. Li, T. Guo, and T. Tao, “Establishment and Application of the Wind and Structural Health Monitoring System for the Runyang Yangtze River Bridge”, Shock and Vibration, vol. 2014, art. no. 421038, 2014, doi: 10.1155/2014/421038.
  • [27] Z. Xing and A. Mita, “A substructure approach to local damage detection of shear structure”, Structural Control and Health Monitoring, vol. 19, no. 2, pp. 309-318, 2012, doi: 10.1002/stc.439.
  • [28] J.J. Lee, Y. Fukuda, M. Shinozuka, S. Cho, and C.-B. Yun, “Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures”, Smart Structures and Systems, vol. 3, no. 3, pp. 373-384, 2007, doi: 10.12989/sss.2007.3.3.373.
  • [29] J.G. Zhao, G.R. Liu, S.H. Huo, and Z.R. Li, “Modes and modal analysis of three-dimensional (3D) structures based on the smoothed finite element methods (S-FEMs) using automatically generatable tetrahedral meshes”, Engineering Analysis with Boundary Elements, vol. 140, pp. 262-281, 2022, doi: 10.1016/j.enganabound.2022.04.013.
  • [30] G. Zhang, R. Zha, and D. Wan, “MPS–FEM coupled method for 3D dam-break flows with elastic gate structures”, European Journal of Mechanics – B/Fluids, vol. 94, pp. 171-189, 2022, doi: 10.1016/j.euromechflu.2022.02.014.
  • [31] A. Shukla and S. P. Harsha, “An Experimental and FEM Modal Analysis of Cracked and Normal Steam Turbine Blade”, Materials Today: Proceedings, vol. 2, no. 4-5, pp. 2056-2063, 2015, doi: 10.1016/j.matpr.2015.07.191.
  • [32] M. Zhang, D. Valentin, C. Valero, A. Presas, M. Egusquiza, and E. Egusquiza, “Experimental and numerical investigation on the influence of a large crack on the modal behaviour of a Kaplan turbine blade”, Engineering Failure Analysis, vol. 109, art. no. 104389, 2020, doi: 10.1016/j.engfailanal.2020.104389.
  • [33] A. Khatir, et al., “A new hybrid PSO-YUKI for double cracks identification in CFRP cantilever beam”, Composite Structures, vol. 311, art. no. 116803, 2023, doi: 10.1016/j.compstruct.2023.116803.
  • [34] M.R. Nashta, R. Taghipour, M. Bozorgnasab, and H. Mirgolbabaei, “A novel method for identification of damage location in frame structures using a modal parameters-based indicator”, Archives of Civil Engineering, vol. 68, no. 3, pp. 633-643, 2022, doi: 10.24425/ace.2022.141907.
  • [35] W. Xu and D.-P. Song, “Integrated optimisation for production capacity, raw material ordering and production planning under time and quantity uncertainties based on two case studies”, Operational Research, vol. 22, no. 3, pp. 2343-2371, 2022, doi: 10.1007/s12351-020-00609-y.
  • [36] P. Schworm, X. Wu, M. Klar, J. Gayer, M. Glatt, and J.C. Aurich, “Resilience optimization in manufacturing systems using Quantum Annealing”, Manufacturing Letters, vol. 36, pp. 13-17, 2023, doi: 10.1016/j.mfglet.2022.12.007.
  • [37] L. Xiang, S. Yang, and C. Gan, “Torsional vibration measurements on rotating shaft system using laser doppler vibrometer”, Optics and Lasers in Engineering, vol. 50, no. 11, pp. 1596-1601, 2012, doi: 10.1016/j.optlaseng.2012.05.018.
  • [38] Z. Mikno, A. Pilarczyk, M. Korzeniowski, P. Kustroń, and A. Ambroziak, “Analysis of resistance welding processes and expulsion of liquid metal from the weld nugget”, Archives of Civil and Mechanical Engineering, vol. 18, no. 2, pp. 522-531, 2018, doi: 10.1016/j.acme.2017.08.003.
  • [39] Z. Mikno, B. Grzesik, and M. Stępień, “The investigation on the ideal spot weld numerical model in resistance welding”, The International Journal of Advanced Manufacturing Technology, vol. 111, no. 3, pp. 895-907, 2020, doi: 10.1007/s00170-020-06114-y.
  • [40] C. Lein and M. Beitelschmidt, “Comparative study of model correlation methods with application to model order reduction”, in The Proceedings 26th International Conference on Noise and Vibration Engineering. Leuven, Belgium: Katholieke Universiteit Leuven, 2014, pp. 2683-2700.
  • [41] R.J. Allemang, “The Modal Assurance Criterion – Twenty Years of Use and Abuse”, Sound and Vibration, vol. 37, no. 8, 2003.
  • [42] M. Pastor, M. Binda, and T. Harčarik, “Modal Assurance Criterion”, Procedia Engineering, vol. 48, pp. 543-548, 2012, doi: 10.1016/j.proeng.2012.09.551.
  • [43] H.P. Fuentes and M. Zehn, “Application of the Craig-Bampton model order reduction method to a composite structure: MACco, COMAC, COMAC-S and eCOMAC”, Open Engineering, vol. 6, no. 1, pp. 185-198, 2016, doi: 10.1515/eng-2016-0024.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c10a024f-5eaf-4d12-bddf-e1589c17ce5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.