Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this work was to investigate the effect of alkali pre-treatment of a Ti6Al7Nb substrate on the morphology and physicochemical properties of calcium phosphate (CaP) coatings. CaP coatings were electrochemically deposited on two groups of substrates: one unmodified and the other pre-treated in a 5M NaOH solution. CaP coatings deposition was performed in a three-electrode system using a potentiostatic mode at a potential of -4 V for 1 h in an electrolyte containing 0.042M Ca(NO3)2 and 0.025M NH4H2PO4. The surface characteristics of the coatings were determined using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and contact angle techniques. Additionally, the corrosion resistance of the coatings was assessed by linear polarization resistance and potentiodynamic polarization tests in PBS solution. Morphological analysis showed that the coatings exhibited no significant differences. EDS analysis confirmed the presence of characteristic elements constituting the CaP coatings in both tested groups. Raman spectra revealed the characteristic peaks of the hydroxyapatite (HAp), amorphous calcium phosphate (ACP), and dicalcium phosphate dihydrate (DCPD) structures. Furthermore, Raman mapping confirmed the effectiveness of substrate pre-treatment, leading to the crystalline structure of the coatings. The water contact angle values indicated that pre-treatment of the substrate in NaOH increases the hydrophilicity of the deposited coatings. Regardless of the substrate preparation method, the deposited CaP coatings exhibited protective properties against corrosion under physiological conditions. The results confirmed that alkali pre-treatment of the Ti6Al7Nb alloy affects the crystallinity and the wettability of the electrodeposited CaP coatings.
Czasopismo
Rocznik
Tom
Strony
1--8
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., zdj.
Twórcy
autor
- Institute of Material Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland
autor
- Institute of Material Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland
autor
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, 12 Tamka St., 91-403 Lodz, Poland
autor
- Institute of Material Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-537 Lodz, Poland
Bibliografia
- [1] Abd-Elaziem W., Darwish M.A., Hamada A., Daoush W.M.: Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Materials and Design 241 (2024) 112850.
- [2] Choi A.H., Karacan I., Ben-Nissan B.: Surface modifications of titanium alloy using nanobioceramic-based coatings to improve osseointegration: a review. Materials Technology 35 (2020) 742-751.
- [3] Furko M., Balázsi C.: Morphological, chemical, and biological investigation of ionic substituted, pulse current deposited calcium phosphate coatings. Materials 13 (2020) 4690.
- [4] Eliaz N., Shmueli S., Shur I., Benayahu D., Aronov D., Rosenman G.: The effect of surface treatment on the surface texture and contact angle of electrochemically deposited hydroxyapatite coating and on its interaction with bone-forming cells. Acta Biomaterialia 5 (2009) 3178-3197.
- [5] Meyer F., Amaechi B.T., Fabritius H.-O., Enax J.: Overview of Calcium Phosphates used in Biomimetic Oral Care. The Open Dentistry Journal 12 (2018) 406-423.
- [6] LeGeros R.Z.: Calcium phosphate-based osteoinductive materials. Chemical Reviews 108 (2008) 4742-4753.
- [7] Eliaz N., Metoki N.: Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials 10 (2017) 334.
- [8] Dorozhkin S. V.: Calcium orthophosphates as bioceramics: State of the art. Journal of Functional Biomaterials 1 (2010) 22-107.
- [9] Safavi M.S., Walsh F.C., Surmeneva M.A., Surmenev R.A., Khalil-Allafi J.: Electrodeposited hydroxyapatite-based biocoatings: Recent progress and future challenges. Coatings 11 (2021) 110.
- [10] Leó B., Jansen J.A.: Thin calcium phosphate coatings for medical implants, wyd. Springer New York, New York, NY 2009.
- [11] Narayanan R., Seshadri S.K., Kwon T.Y., Kim K.H.: Calcium phosphate-based coatings on titanium and its alloys. Journal of Biomedical Materials Research - Part B Applied Biomaterials 85 (2008) 279-299.
- [12] Wang H., Eliaz N., Xiang Z., Hsu H.P., Spector M., Hobbs L.W.: Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy. Biomaterials 27 (2006) 4192-4203.
- [13] Łosiewicz B., Osak P., Maszybrocka J., Kubisztal J., Bogunia S., Ratajczak P., Aniołek K.: Effect of temperature on electrochemically assisted deposition and bioactivity of cap coatings on cpti grade 4. Materials 14 (2021) 5081.
- [14] Furko M., May Z., Havasi V., Kónya Z., Grünewald A., Detsch R., Boccaccini A.R., Balázsi C.: Pulse electro-deposition and characterization of non-continuous, multi-element-doped hydroxyapatite bioceramic coatings. Journal of Solid State Electrochemistry 22 (2018) 555-566.
- [15] Metoki N., Leifenberg-Kuznits L., Kopelovich W., Burstein L., Gozin M., Eliaz N.: Hydroxyapatite coatings electrodeposited at near-physiological conditions. Materials Letters 119 (2014) 24-27.
- [16] Nam P.T., Lam T.D., Huong H.T., Phuong N.T., Trang N.T.T., Hoang T., Huong N.T.T., Thang L.B., Drouet C., Grossin D., Kergourlay E., Bertrand G., Devilliers D., Thanh D.T.M.: Electrodeposition and characterization of hydroxyapatite on TiN/316LSS. Journal of Nanoscience and Nanotechnology 15 (2015) 9991-10001.
- [17] Huang S., Zhou K., Huang B., Li Z., Zhu S., Wang G.: Preparation of an electrodeposited hydroxyapatite coating on titanium substrate suitable for in-vivo applications. Journal of Materials Science: Materials in Medicine 19 (2008) 437-442.
- [18] Feng Q.L., Cui F.Z., Wang H., Kim T.N., Kim J.O.: Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment. Journal of Crystal Growth 210 (2000) 735-740.
- [19] De Oliveira M.G., Radi P.A., Pereira Reis D.A., Dos Reis A.G.: Titanium bioactive surface formation via alkali and heat treatments for rapid osseointegration. Materials Research 24 (2021) e20200514.
- [20] Huang Y., Ding Q., Han S., Yan Y., Pang X.: Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. Journal of Materials Science: Materials in Medicine 24 (2013) 1853-1864.
- [21] Lu M., Chen H., Yuan B., Zhou Y., Min L., Xiao Z., Zhu X., Tu C., Zhang X.: Electrochemical Deposition of Nanostructured Hydroxyapatite Coating on Titanium with Enhanced Early Stage Osteogenic Activity and Osseointegration. International Journal of Nanomedicine Volume 15 (2020) 6605-6618.
- [22] Lu J., Yu H., Chen C.: Biological properties of calcium phosphate biomaterials for bone repair: A review. RSC Advances 8 (2018) 2015-2033.
- [23] Schmidt R., Hoffmann V., Helth A., Gostin P.F., Calin M., Eckert J., Gebert A.: Electrochemical deposition of hydroxyapatite on beta--Ti-40Nb. Surface and Coatings Technology 294 (2016) 186-193.
- [24] Feng Q.L., Wang H., Cui F.Z., Kim T.N.: Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment. Journal of Crystal Growth 200 (1999) 550-557.
- [25] Niinomi M.: Metals for biomedical devices, wyd. Woodhead Publishing, Duxford 2019.
- [26] Canva.com. https://www.canva.com/
- [27] Ben-Nissan B.: Advances in Calcium Phosphate Biomaterials, wyd. Springer Berlin Heidelberg, Berlin, Heidelberg 2014.
- [28] Silva C.C., Sombra A.S.B.: Raman spectroscopy measurements of hydroxyapatite obtained by mechanical alloying. Journal of Physics and Chemistry of Solids 65 (2004) 1031-1033.
- [29] Karampas I.A., Kontoyannis C.G.: Characterization of calcium phosphates mixtures. Vibrational Spectroscopy 64 (2013) 126-133.
- [30] Pellegrino E.D., Biltz R.M.: Bone carbonate and the Ca to P molar ratio Nature 219 (1968) 1261-1262.
- [31] Awan N.M., Manzoor M.U., Hussain F., Rehman Z.U., Ishtiaq M.: A Feasible Route to Produce 30 MPa Adhesion Strength of Electrochemically Deposited Hydroxyapatite (HA) on Titanium (Ti6Al4V) Alloy. Transactions of the Indian Institute of Metals 76 (2023) 1653-1660.
- [32] Metikoš-Huković M., Kwokal A., Piljac J.: The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24 (2003) 3765-3775.
- [33] Luo Y., Jiang Y., Zhu J., Tu J., Jiao S.: Surface treatment functionalization of sodium hydroxide onto 3D printed porous Ti6Al4V
- for improved biological activities and osteogenic potencies. Journal of Materials Research and Technology 9 (2020) 13661-13670
- [34] Butev E., Esen Z., Bor S.: In vitro bioactivity investigation of alkali treated Ti6Al7Nb alloy foams. Applied Surface Science 327 (2015) 437-443.
- [35] Webb K., Hlady V., Tresco P.A.: Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. Journal of Biomedical Materials Research 41 (1998) 422-430.
- [36] Lakstein D., Kopelovitch W., Barkay Z., Bahaa M., Hendel D., Eliaz N.: Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6Al-4V implants in rabbits. Acta Biomaterialia 5 (2009) 2258-2269.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1051827-5924-4644-aa7a-80fa12b5fded