PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ambient dose equivalent measurements in secondary radiation fi elds at proton therapy facility CCB IFJ PAN in Krakow using recombination chambers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the Warsaw Medical Physics Meeting 2014 (2014 ; 15-17 May ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
This work presents recombination methods used for secondary radiation measurements at the Facility for Proton Radiotherapy of Eye Cancer at the Institute for Nuclear Physics, IFJ, in Krakow (Poland). The measurements of H*(10) were performed, with REM-2 tissue equivalent chamber in two halls of cyclotrons AIC-144 and Proteus C-235 and in the corridors close to treatment rooms. The measurements were completed by determination of gamma radiation component, using a hydrogen-free recombination chamber. The results were compared with the measurements using rem meter types FHT 762 (WENDI-II) and NM2 FHT 192 gamma probe and with stationary dosimetric system.
Czasopismo
Rocznik
Strony
23--28
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 Św. A. Boboli Str., 02-525 Warsaw, Poland, Tel.: +48 22 234 8643, Fax: +48 22 849 0395
  • National Centre for Nuclear Research, 7 Andrzeja Sołtana Str., 05-400 Otwock/Świerk, Poland
autor
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 Św. A. Boboli Str., 02-525 Warsaw, Poland, Tel.: +48 22 234 8643, Fax: +48 22 849 0395
autor
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, 8 Św. A. Boboli Str., 02-525 Warsaw, Poland, Tel.: +48 22 234 8643, Fax: +48 22 849 0395
  • The Henryk Niewodniczański Institute for Nuclear Physics of the Polish Academy of Science, 152 Radzikowskiego Str., 31-342 Kraków, Poland
autor
  • The Henryk Niewodniczański Institute for Nuclear Physics of the Polish Academy of Science, 152 Radzikowskiego Str., 31-342 Kraków, Poland
autor
  • The Henryk Niewodniczański Institute for Nuclear Physics of the Polish Academy of Science, 152 Radzikowskiego Str., 31-342 Kraków, Poland
autor
  • The Henryk Niewodniczański Institute for Nuclear Physics of the Polish Academy of Science, 152 Radzikowskiego Str., 31-342 Kraków, Poland
Bibliografia
  • 1. National Association for Proton Therapy. (2014).Retrieved August 20, 2014, from http://www.protontherapy. org/facts.htm.
  • 2. Fowler, J. F. (2003). What can we expect from dose escalation using proton beams. Clin. Oncol., 15(1), S10–S15. DOI: 10.1053/clon.2002.0182.
  • 3. Xu, X. G., Bednarz, B., & Paganetti, H. (2008). A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys. Med. Biol., 53, 193–241. DOI: 10.1088/0031-9155/53/13/R01.
  • 4. Chung, C. S., Keating, N., Yock, T., & Tarbell, N. (2008). Comparative analysis of second malignancy risk in patients treated with proton therapy versus conventional photon therapy. Int. J. Radiat. Oncol. Biol. Phys., 72(1), S8. DOI: 10.1016/j.ijrobp.2008.06.785.
  • 5. Komaki, R., Sejpal, S., & Wei, X. (2008). Reduction of bone marrow suppression for patients with stage III NSCLC treated by proton and chemotherapy compared with IMRT and chemotherapy. Particle Therapy Cooperative Group 47, O10:14.
  • 6. Mayahara, H., Murakami, M., Kagawa, K., Kawaguchi, A., Oda, Y., Miyawaki, D., Sasaki, R., Sugimura, K., & Hishikawa, Y. (2007). Acute morbidity of proton therapy for prostate cancer: the Hyogo Ion Beam Medical Center experience. Int. J. Radiat. Oncol. Biol. Phys., 69(2), 434–443. DOI: 10.1016/j.ijrobp.2007.03.009.7. Steneker, M., Lomax, A., & Schneider, U. (2006).Intensity modulated photon and proton therapy for the treatment of head and neck tumors. Radiother. Oncol., 80(2), 263–267. DOI: 10.1016/j.radonc.2006.07.025.
  • 8. Lee, C. T., Bilton, S. D., Famiglietti, R. M., Riley, B.A., Mahajan, A., Chang, E. L., Maor, M. H., Woo, S. Y., Cox, J. D., & Smith, A. R. (2005). Treatment planning with protons for pediatric retinoblasta, medulloblastoma, and pelvic sarcoma: how do protons compare with other conformal techniques? Int. J. Radiat. Oncol. Biol. Phys., 63(2), 362–372.
  • 9. Miralbell, R., Lomax, A., Cella, L., & Scheider, U. (2002). Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiat. Oncol. Biol. Phys., 54(3), 824–829. DOI: 10.1016/S0360-3016(02)02982-6.
  • 10. Michalec, B., Swakoń, J., Sowa, U., Ptaszkiewicz, M., Cywicka-Jakiel, T., & Olko, P. (2010). Proton radiotherapy facility for ocular tumors at the IFJ PAN in Krakow Poland. Appl. Radiat. Isot., 68(4/5), 738–742. DOI: 10.1016/j.apradiso.2009.11.001.
  • 11. Swakon, J., Olko, P., Adamczyk, D., Cywicka-Jakiel, T., Dabrowska, J., Dulny, B., Grzanka, L., Horwacik, T., Kajdrowicz, T., Michalec, B., Nowak, T., Ptaszkiewicz, M., Sowa, U., Stolarczyk, L., & Waligorski, M. P. R. (2010). Facility for proton radiotherapy of eye cancer at IFJ PAN in Krakow. Radiat. Meas., 45(10), 1469–1471. DOI: 10.1016/j.radmeas.2010.06.020.
  • 12. The Bronowice Cyclotron Centre, IFJ PAN. (2014). Retrieved August 20, 2014, from http://www.ifj.edu.pl/ccb/.
  • 13. Brenner, D. J., & Hall, E. J. (2008). Secondary neutrons in clinical proton radiotherapy: A charged issue. Radiother. Oncol., 86, 165–170. DOI: 10.1016/j.radonc.2007.
  • 14. Agosteo, S., Birattari, C., Caravaggio, M., Silari, M., & Tosi, G. (1998). Secondary neutron and photon dose in proton therapy. Radiother. Oncol., 48, 293–305.DOI: 10.1016/S0167-8140(98)00049-8.
  • 15. Wroe, A., Rosenfeld, A., & Schulte, R. (2007). Out--of-field dose equivalents delivered by proton therapy of prostate cancer. Med. Phys., 34, 3449–3456.
  • 16. Newhauser, W. D., Burns, J., & Smith, A. R. (2002). Dosimetry for ocular proton beam therapy at the 28 E. A. Jakubowska et al. Harvard Cyclotron Laboratory based on the ICRU Report 59. Med. Phys., 29, 1953–1961.
  • 17. Yan, X., Titt, U., Koehler, A. M., & Newhauser, W. D. (2002). Measurement of neutron dose equivalent to proton therapy patients outside of the proton radiation field. Nucl. Instrum. Methods Phys. Res. Sect.A-Accel. Spectrom. Dect. Assoc. Equip., 476(1),429–434. DOI: 10.1016/S0168-9002(01)01483-8.
  • 18. International Commission on Radiation Units and Measurements. (1993). Quantities and units in radiation protection dosimetry. Bethesda, MD: ICRU. (ICRU Report 51).
  • 19. International Commission on Radiation Units and Measurements. (2001). Determination of operational dose equivalent quantities for neutrons. ICRU Report 66, Journal of the ICRU, 1(2). Ashford, UK: Nuclear Technology Publishing.
  • 20. Golnik, N. (1996). Recombination methods in the dosimetry of mixed radiation. Otwock-Świerk: Institute of Atomic Energy. (IAE-20/A).
  • 21. Zielczynski, M., & Golnik, N. (1994). Recombination index of radiation quality – measuring and applications.Radiat. Prot. Dosim., 52, 419–422.
  • 22. Zielczynski, M., Golnik, N., & Rusinowski, Z. (1996). A computer controlled ambient dose equivalent meter based on a recombination chamber. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 370, 563–567. DOI: 10.1016/0168-9002(95)01013-0.
  • 23. Golnik, N., Brede, H. J., & Guldbakke, S. (1997). Response of REM-2 recombination chamber to H*(10) of monoenergetic neutrons. Radiat. Prot. Dosim., 74, 139–144.
  • 24. Zielczyński, M., Golnik, N., & Gryziński, M. A. (2008). Applications of recombination chambers in the dosimetry of high energy radiation fields. Nukleonika, 53(Suppl. 1), S45–S52.
  • 25. Caresana, M., Denker, A., Esposito, A., Ferrarini, M., Golnik, N., Hohmann, E., Leuschner, A., Luszik--Bhadra, M., Manessi, G., Mayer, S., Ott, K., Röhrich, J., Silari, M., Trompier, F., Volnhals, M., & Wielunski, M. (2014). Intercomparison of radiation protection instrumentation in a pulsed neutron field. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom.Dect. Assoc. Equip., 737, 203–213. DOI: 10.1016/j.nima.2013.11.073.
  • 26. Zielczyński, M., Golnik, N., & Gryziński, M. A. (2007). A comparison of different recombination methods in mixed radiation fields at high energy accelerators. Radiat. Prot. Dosim., 126(1/4), 248–252.DOI: 10.1093/rpd/ncm051.
  • 27. Zielczyński, M., Golnik, N., Gryziński, M. A., & Tulik, P. (2010). The use of recombination chambers at radiation therapy facilities. Radiat. Meas., 45(10), 1472–1475. DOI: 10.1016/j.radmeas.2010.06.027.
  • 28. Jakubowska, E., Zielczyński, M., Golnik, N., Gryziński, M. A., & Krzemiński, Ł. (2014). A ring-shaped recombination chamber for hadron therapy dosimetry. Radiat. Prot. Dosim . DOI: 10.1093/rpd/nct355.
  • 29. Olsher, R. H., Hsu, H. -H., Beverding, A., Kleck, J. H., Casson, W. H., Vasilik, D. G., & Devine, R. T. (2000). WENDI: An improved neutron REM meter. Health Phys., 79(2), pdf only. 30. Olsher, R. H., & McLean, T. D. (2008). High-energy response of the PRESCILA and WENDI-II neutron rem meters. Radiat. Prot. Dosim., 130(4), 510–513. DOI: 10.1093/rpd/ncn092.
  • 31. Cywicka-Jakiel, T., Stolarczyk, L., Swakoń, J., Olko, P., & Waligórski, M. P. R. (2010). Individual patient shielding for a proton eye therapy facility. Radiat. Meas., 45(10), 1127–1129. DOI: 10.1016/j.radmeas. 2010.05.018.
  • 32. European Commission Directorate-General for Energy and Transport. (2009). Directorate H – Nuclear Energy, Unit H.4 – Radiation Protection No. 160. Technical Recommendations for Monitoring Individuals Occupationally Exposed to External Radiation. Retrieved August 20, 2014, from http://ec.europa.eu/energy/nuclear/radiation_protection/doc/publication/160.pdf.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c102c3f6-db34-4469-8fba-929098755faa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.