PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane metody przeciwdziałania skutkom reaktywności kruszywa żwirowego

Identyfikatory
Warianty tytułu
EN
Selected methods of preventing the effects of gravel aggregate reactivity
Języki publikacji
PL
Abstrakty
PL
Przedstawiono wyniki badań dotyczące skuteczności dodatku metakaolinu i azotanu litu w zapobieganiu negatywnym skutkom reakcji alkaliów z kruszywem naturalnym. Oceniono efektywność wybranych inhibitorów korozji według przyspieszonej metody badania zmian ekspansji zapraw według ASTM C1576 oraz betonów według ASTM C1293. Badania uzupełniono wynikami obserwacji mikrostruktury pod elektronowym mikroskopem skaningowym, z analizą składu chemicznego w mikroobszarach. Wyniki badań ekspansji betonu wykazały większą skuteczność metakaolinu w zmniejszeniu zagrożenia reaktywności alkalicznej kruszywa żwirowego.
EN
Efficacy of metakaolin and lithium nitrate used to inhibit negative effects of alkali-natural aggregate reaction was presented. Both corrosion inhibitors were assessed with the accelerated method of measuring expansion changes in mortars (ASTM C1576) and concretes (ASTM C1293). Scanning electron microscopy was used to observe the microstructure and perform chemical analysis in microareas. The results of concrete expansion tests showed that metakaolin was more effective in suppressing alkali reactivity of the gravel aggregate.
Rocznik
Strony
542--546
Opis fizyczny
Bibliogr. 35 poz., il., tab.
Twórcy
  • Wydział Budownictwa i Architektury, Politechnika Świętokrzyska
  • Wydział Budownictwa i Architektury, Politechnika Świętokrzyska
Bibliografia
  • [1] ASTM C1260-14, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), ASTM International, West Conshohocken, PA, 2014.
  • [2] ASTM C1293-20a, Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction, ASTM International, West Conshohocken, PA, 2008.
  • [3] ASTM C1567-13, Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method), ASTM International, West Conshohocken, PA, 2013.
  • [4] Bérubé M-A., Chouinard D., Pigeon M., Frenette J., Boisvert L., Rivest M.: Effectiveness of Sealers in Counteracting Alkali-Silica Reaction in Plain and Air-Entrained Laboratory Concretes Exposed to Wetting and Drying, Freezing and Thawing, and Salt Water. "Canadian Journal of Civil Engineering", No. 29 (2)/2002.
  • [5] Bleszynski R.F.: The performance and durability of concrete with ternary blends of silica fume and blast-furnace slag. PhD Thesis, Toronto 2002.
  • [6] Feng X., Thomas M.D.A., Bremner T.W., Folliard K.J., Fournier B.: Summary of research on the effect of LiNO3 on alkali-silica reaction in new concrete. "Cement and Concrete Research", No. 40/2010.
  • [7] Freyburg E., Schliffkowitz D.: Bewertung der Alkali-Reaktivitat von Gesteinskörnungen nach petrographischen und mikrostrukturellen Kriterien. "Tagungsberichte der 16. Internationale Baustofftagung ibausil", Weimar 2006.
  • [8] Garbarcik A., Glinicki M.A., Jóźwiak-Niedźwiedzka D., Adamski G., Gibas K.: Wytyczne techniczne klasylikacji kruszyw krajowych i zapobiegania reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich (z załącznikami). ICIMB i IPPT PAN, Kraków - Warszawa 2019.
  • [9] Hong S.-H., Han S.-H., Yun K.-K: The case study of concrete pavement deterioration by alkali-silica reaction in Korea. "International Journal of Concrete Structures and Materials", No. 1(1 )/2007.
  • [10] Katayama T.: The so-called alkali-carbonate reaction (ACR) - Its mineralogical and geochemical detail, with special reference to ASR. "Cement and Concrete Research", No. 40/2010.
  • [11] Lahdensivu J., Aromaa J.: Renovation ot an alkali-aggregate reaction damaged swimming pool. "Case Studies in Construction Materials", No. 3/2015.
  • [12] Leemann A., Lörtscher L., Bernard L., Le Saout G., Lothenbach B., Espinosa-Marza/ R.M.: Mitigation of ASR by the use of LiNO3 - Characterization of the reaction products. "Cement and Concrete Research", No. 59/2014.
  • [13] Li J.: Problems on alkali-aggregate reactions of dam concrete in China. "12th International Conference on Alkali-Aggregate Reaction in Concrete", Beijing 2004.
  • [14] McCoy W.J., Caldwell A.G.: New approach in inhibiting alkali-aggregate expansion. "ACI Materials Journal", No. 22 (9)/1951.
  • [15] Owsiak Z., Zapała J., Czapik P.: Rozpoznanie przyczyn reakcji kruszywa żwirowego z alkaliami w betonie. "Cement Wapno Beton", nr 3/2012.
  • [16] Ramlochan T., Thomas M.D.A., Gruber K.A.: The effect of metakaolin on alkali silica reaction in concrete. "Cement and Concrete Research", No. 30 (3)/2000.
  • [17] Ryell J., Mlynarczyk R.: Rehabilitation of a major 38 year old structure characterized by severe alkali-aggregate reactivity. "11th International Conference on Alkali-Aggregate Reaction", Quebec 2000.
  • [18] Seung-Ho H., Seung-Hwan H., Kyong-Ku Y.: A Case Study of Concrete Pavement Deterioration by Alkali-Silica Reaction in Korea. "International Journal ot Concrete Structures and Materials", No. 1 (1 )/2007.
  • [19] Shehata M.H., Thomas M.D.A., Bleszynski R.F.: The effect of fly composition on the chemistry of pore solution. "Cement and Concrete Research", No. 29 (12)/1999.
  • [20] Shehata M.H., Thomas M.D.A.: Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete. "Cement and Concrete Research", No. 32 (3)/2002.
  • [21] Snyder K., Lew H.: Alkali-silica reaction degradation of nuclear power plant concrete structures: a scoping study. "Materials Science", 2013.
  • [22] Stanton T.R.: Expansion of concrete through reaction between cement and aggregate. "Proceedings of the American Society of Civil Engineers", No. 66 (10)/1940.
  • [23] Stark D.: The Moisture Condition of Field Concrete Exhibiting Alkali-Silica Reactivity. "CANMET/ACI International Workshop on Alkali-Aggregate Reaction in Concrete", Canada 1990.
  • [24] Stark J., Freybur E., Seyfarth K., Giebson C.: AKR-Prüfverfahren zur Beurteilung von Gesteinskörnungen und projektspezilischen Betonen, Beton - Die Fachzeitschrift für Bau+Technik. "Verlag Bau+Technik GmbH", No. 56/12, 2006.
  • [25] Strategic Highway Research Program (1993). SHRP C-315, Handbook for the Identification of Alkali-Silica Reactivity in Highway Structures, Washington 1991.
  • [26] Swenson E.G.: A Canadian Reactive Aggregate Undetected by ASTM Tests. "ASTM Bulletin", No. 226/1957.
  • [27] Thomas M.D.A.: The effect of supplementary cementing materials on alkali-silica reaction: A review. "Cement and Concrete Research", No. 41/2011.
  • [28] Thomas M.D.A., Fournier B., Folliard K.J.: Alkali-Aggregate Reactivity (AAR) Facts Book. Report no. FHWA-HIF-13-019, Texas 2013.
  • [29] Thomas M.D.A., Folliard K.J.: Concrete aggregates and the durability of concrete. [In]: C.L. Page, M.M. Page (eds.), Durability of concrete and cement composites, Woodhead, Cambridge 2007.
  • [30] Thomas M.D.A., Fournier B., Folliard K.J., Ideker J.H., Resendez Y.: The use of lithium to prevent or mitigate alkali-silica reaction in concrete pavements and structures. Report no. FHWA-HRT-06-133, Texas 2007.
  • [31] Torii K., Sannoh Ch., Kubo Y., Ohashi Y.: Serious dama ges of ASR affected RC bridge piers and their strengthening techniques. "12th International Conference on Alkali-Aggregate Reaction in Concrete", Beijing 2004.
  • [32] Tremblay C., Bérubé M.A., Fournier B., Thomas M.D.A., Stokes D.B.: Performance of lithium-based products against ASR: application to Canadian aggregates, reaction mechanisms, and testing. "12th International Conference on Alkali-Aggregate Reaction in Concrete", Beijing 2004.
  • [33] Zapała-Sławeta J., Owsiak Z.: The role of lithium copmounds in mitigating alkali - gravel aggregate reaction. "Construction and Building Materials", No. 115/2016.
  • [34] Zapała-Sławeta J.: Alkali-silica reaction in the presence of metakaolin - the significant role of calcium hydroxide. "Materials Science & Engineering - IOP", No. 245/2017.
  • [35] Zapała-Sławeta J.: Wybrane aspekty zapobiegania skutkom reakcji alkalia-krzemionka w betonie. Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c1019d65-5131-4a1c-8121-fc4f82be10a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.