PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Data-based method for the determination of temperature dependence of heat capacity of highly dispersed powders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accuracy of engineering and economic calculations in different areas requires the use of accurate and prompt values of heat capacity for new or modified materials. A number of existing methods have an error in measuring the heat capacity of powder materials, and use non-standard devices and electric heaters which are not produced industrially. This work is aimed at developing the method for determining the heat capacity of the powder, accuracy evaluation of this method and mathematical processing of experimental data to determine the temperature dependence of the molar heat capacity. To solve the problem the method based on the DTA technique was developed. The measuring apparatus for determining the temperature dependence of the heat capacity includes two standard cups for DTA analysis with investigated material and MgO, heat-variable resistor of film type Pt100, multichannel recorder. The apparatus is placed in a drying oven. From the theory of heat transfer and the assumption about steady-flow heat transfer the equation for molar heat capacity was obtained. The method requires the measuring of temperature of the investigated material and MgO during the linear heat of the drying oven as well as air temperature in the oven. Empirical values of heat capacity of standard substances calculated by the equation for each temperature were compared with the values from reference data. The uncertainty of finding the heat capacity did not exceed 0,5%.
Twórcy
autor
  • Ukrainian State University of Chemical Technology
autor
  • Ukrainian State University of Chemical Technology
autor
  • Ukrainian State University of Chemical Technology
autor
  • Ukrainian State University of Chemical Technology
Bibliografia
  • 1. Karnina A. Yu., Gyrenko A. O., Chernenko I. M. 2014. Synthesis of the vanadium dioxide from ammonium vanadate (IV). // XII National Conference of young scientists on current issues of modern chemistry. Dnipropetrovs’k: DNU, 45. (in Ukraine).
  • 2. Pat. 101597036A China. MPK H 01 G 9/042, C 01 B 21/06. Method for preparing nano vanadium nitride (VN) electrode material for super capacitor / Heng Liu, Ling Lu; Univ Sichuan. – CN 200910139578; appl. 27.06.2009; publ.09.12.2009, Bul. N18, 2009. (in Chinese).
  • 3. Slobodov A., Sibirtsev V., Sochgin A., Gavrilov A. and Mischenko G. 2012. Increasing the reliability and consistency of the thermodynamic functions of substances on the basis of orthogonal representations. Proceedings of the St. Petersburg State Technological Institute (technical University). Nr 14, 13-17. (in Russian).
  • 4. Kolesnik K. V., Musov O. P., Kalashnikov S. G.. 2013. Equilibrium processes of formation of polivanadates. 2. The balance of system V2O5–H2O–H2C2O4–NH4OH. Problems of chemistry and chemical technology. Nr 5, 177-181. (in Ukrainian).
  • 5. Belousova N. V., Arkhipova E. O. 2009. Thermodynamic properties of bismuth pirostannate. Polzunovsky Vestnik. Nr 3, 56-59. (in Russia).
  • 6. Moiseyev G. K., Vatolin N. A. 2001. Some laws of changes and methods of calculating of thermochemical properties of inorganic compounds. Ekaterinburg: Ural Branch of Russian Academy of Sciences, 135. (in Russian).
  • 7. Kirillin V. A., Sychev V. V., Sheydlin A. E. 2008. Technical Thermodynamics. Moscow: MEU, 513. (in Russian).
  • 8. Pavlov M., Karpov D., Koryukin S. 2013. Experimental-calculating definition of the specific volumetric heat capacity of the loose disperses material on the example of milling peat with the help of the calorimetric method. Mechanization of Construction. Nr 7 (829), 49-53. (in Russian).
  • 9. Pat. 104535611A China, MPK G 01 N 25/20. Solid specific heat capacity measurement standard device and measurement method / Li Jia, Wang Haifeng, Sun Guohua; National Institute of Metrology, P.R.C. – CN2015124191, appl. 16.01.2015; publ. 22.04.2015. (in Chinese).
  • 10. Boyko B. N. 2006. Applied microcalorimetry. The domestic appliances and methods. Moscow: Nauka, 119.
  • 11. Pat. 85826 Ukraine, MPK G 01 N 25/18, G 01 N 25/20. A method for determining the specific heat of the material / P. P. Gavrylko, G. M. Shpyrko, V. I. Tkachenko, U. A. Banduryn, M. P. Klyap; applicant and patentee Uzhgorod Educational Center of Kyiv National University of Trade and Economics. – №а200503071; appl. 04.04.2005; publ. 10.03.2009, Byul. №5, 2009. (in Ukrainian).
  • 12. Pat. 23640A Ukraine, MPK G 01 N 25/20. Method of determining of the heat capacity of measuring cells by thermoelectric sensors / Y. Skrypnyck, A. Himicheva, V. Dubrovno, V. Chernomorchenko; applicant and patentee State Academy Of Light Industry of Ukraine. – №96124501; appl. 02.12.1996; publ. 02.06.1998, Byul. №7, 1998. (in Ukrainian).
  • 13. Kolesnik E., Girenko A., Musov O. 2013. Preparation of the ammonium tetravanadate (IV) by sol-gel method. VIth International Scientific and Technical Conference. Dnipropetrovs’k: USUCT. Vol.1, 90. (in Russian).
  • 14. Chernenko I. M., Musov O. P., Oleynik O. U., and Ivon A. I. 2010. The preparation and diagnostics of the nanodispersed system of an oxovanadium complex (V). Nanosystems, Nanomaterials, Nanotechnologies. Vol. 8, Nr 4, 983-991. (in Russian)
  • 15. Pat. 49664 Ukraine, MPK G 01 N 31/16. Method of determining vanadium content in oxides of the tetra- and pentavalent state during their joint presence / I.M. Chernenko, O.Yu. Oleynik, O.P. Musov; applicant and patentee Ukr. St. Chem.-Technolog. Univ. – № u200910634; appl. 21.10.2009; publ. 11.05.2010, Bul.№ 9, 2010. (in Ukrainian).
  • 16. Dytnerskiy Yu. I. 1995. Processes and apparatus of chemical technology. Moscow: Khimiya, 400. (in Russian).
  • 17. Franklin A. Graybill, Hariharan K. Iyer. 1994. Regression analysis: Concept and application. Belmont, California: Duxbury Press, 648. (in English).
  • 18. Cherep A., Shvets Y. 2014. Use of extrapolation to forecast the working capital in the mechanical engineering companies. Econtechmod. An international quarterly journal on economics in technology, new technologies and modeling processes. Vol. 3, Nr 1, 23-28. (in English)
  • 19. Tysovsky L., Stepanyshyn V. 2014. Mathematical models for occupational injuries analysis at the enterprises of the state forestry committee of Ukraine. Econtechmod. An international quarterly journal on economics in technology, new technologies and modeling processes. Vol. 3, Nr 2, 71-78. (in English).
  • 20. JCGM 101:2008. Guide to the expression of uncertainty in measurement. Evaluation of measurement data.
  • 21. ISO 21748:2010. Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation.
  • 22. ISO/TS 21749:2005. Measurement uncertainty for metrological application. - Repeated measurements and nested experiments.
  • 23. ISO/TS 21748:2004. Guidance for the use of repeatability and trueness estimates in measurements uncertainty estimation.
  • 24. Tsidelko V. 2002. Uncertainty of measurement. Data processing and presentation of measurement result. Kyiv: Polytechnica, 176. (in Ukrainian).
  • 25. Polischuk Y., Dorozhovets’ M., Yatsuk V. 2003. Metrology and measurement technology. Lviv: Beskid Bit, 544. (in Ukrainian).
  • 26. Korobov V. I., Naryshkin D. G., Ochkov B. F.. 2008. Chemical Engineer's WebHandbook. Available online at: http://twt.mpei.ac.ru/TTHB/1/HBThermValues.
  • 27. Dorozhovets’ M. 2007. Processing of the measurement results. Lviv: Lviv Polytechnic National University, 624. (in Ukrainian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c10000d1-c4cf-4bbb-ab0e-e6821fcbeff8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.