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1. Introduction 
 
The notion of the formal grammar needs some 
representation, if we want to use it in any 
algorithm run on a computer. Here, in this 
article, the objective is to develop a binary 
representation, easy to use and to formulate an 
optimisation problem. A binary representation 
ℬ(𝐺) of a grammar 𝐺 is considered to be  
a string of the form: 
 

ℬ(𝐺) = [𝑏1, 𝑏2, … , 𝑏Ξ],  (1) 
 
where Ξ is its (fixed) length, 𝑏𝑖 ∈ {0,1}, and 
𝑖 = 1,2, … , Ξ. 

It is assumed throughout this paper  
that each production 𝑃𝑖 in 𝐺 is of one of  
the following forms: 
 

𝑃𝑖: 𝐴 → 𝐵𝐶,   (2) 
 

𝑃𝑖: 𝐴𝐵 → 𝐶𝐷,   (3) 
 
where 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝑉𝑁 are nonterminal symbols, 
or 

𝑃𝑖: 𝐴 → 𝑎,   (4) 
 
where 𝐴 ∈ 𝑉𝑁 is a nonterminal symbol and 
𝑎 ∈ 𝑉𝑇 is a terminal symbol. The productions of 
the form 𝑃𝑖: 𝐴 → 𝐵 are ruled out as redundant. 
The forms (2), (3) and (4) are sufficient to 
represent a noncontracting grammar of order 2 
– a type of grammar weakly equivalent to 
noncontracting grammars of any order, and 
hence weakly equivalent to any context-sensitive 
grammar (see [3]). 

It is required, of course, that each grammar 
𝐺 must have its own unique binary 
representation ℬ(𝐺). As a rule of thumb, two 
similar grammars should also have similar 
representations. “Similar” means here that some 
metric could be defined, in which two 
short-distant grammars have two short-distant 
corresponding representations. Likewise,  
the binary representations of two long-distant 
grammars should also be long-distant. 

Finally, it is also assumed that there exists 
a space of grammars. Since it is needed for 
formulating an optimisation problem on this 
space, the number of possible nonterminal and 
terminal symbols, as well as the number of 
possible productions, is limited and considered 
constant. Thus, the space 𝒮 = 𝒮�𝑽�𝑁,𝑽�𝑇� of 
grammars of the form 𝐺 = 〈𝑉𝑁, 𝑉𝑇, 𝑃, 𝑆〉 could 
be defined as 𝒮 = �𝐺 | 𝑉𝑁 ⊆ 𝑽�𝑁 ∧ 𝑉𝑇 ⊆ 𝑽�𝑇�. 𝑽�𝑁 
is the maximal set of nonterminal nodes, i.e. 
every nonterminal symbol of a grammar 
𝐺 ∈ 𝒮�𝑽�𝑁,𝑽�𝑇� belongs to 𝑽�𝑁. Likewise, 𝑽�𝑇 is 
the maximal set of terminal nodes, i.e. every 
terminal symbol of a grammar 𝐺 ∈ 𝒮�𝑽�𝑁,𝑽�𝑇� 
belongs to 𝑽�𝑇. Since adding new elements to 𝑉𝑁 
or 𝑉𝑇, but without adding any production to 𝑃, 
does not change the grammar 𝐺, i.e. both are still 
weakly equivalent, the space 𝒮 of grammars can 
also be defined as 
 

𝒮�𝑽�𝑁,𝑽�𝑇� = �𝐺 | 𝑉𝑁 = 𝑽�𝑁 ∧ 𝑉𝑇 = 𝑽�𝑇�.   (5) 
 
That is, each 𝐺 = 〈𝑉𝑁, 𝑉𝑇, 𝑃, 𝑆〉 ∈ 𝒮 can be 
extended to 𝐺 = 〈𝑽�𝑁,𝑽�𝑇, 𝑃, 𝑆〉 and still not 
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affecting the language generated by 𝐺. From 
now on, the latter definition is used in this paper. 
 
2. General concept of binary 

representations of grammars 
 
Assume we have a universal set 𝑽�𝑁 of 
nonterminals, a universal set 𝑽�𝑇 of terminals, 
and a universal set 𝑷� of production rules.  
The maximal space of grammars, that we can 
define in more detail now, is 
 

𝒮 = �𝐺 | 𝑉𝑁 = 𝑽�𝑁 ∧ 𝑉𝑇 = 𝑽�𝑇 ∧ 𝑃 ⊆ 𝑷��.   (6) 
 
Hence, two distinct grammars in the space 𝒮 are 
distinguishable only by their subsets of 
production rules. 

If enumerating all the possible production 
rules from 𝑷�, i.e. mapping each production rule 
to its unique index, all the grammars in 𝒮 would 
be encoded with a binary string as follows: Let 
𝑷��⃗ = [𝑃1, 𝑃2, … , 𝑃Ξ] be an ordered vector of all 
possible productions, indexed from 1 through Ξ, 
where, of course, Ξ = �𝑷��. Now, as per  
the definition (1), let ℬ(𝐺) = [𝑏1, 𝑏2, … , 𝑏Ξ]  
be such that: 

𝑏𝑖 = �0, 𝑃𝑖 ∉ 𝑃,
1, 𝑃𝑖 ∈ 𝑃,

�  (7) 

 
where 𝑃 is the set of production rules of 𝐺. 

The general concept of binary 
representations depends on how 𝒮 is defined. 
This, in turn, depends on assumed sets of 
possible terminals 𝑽�𝑇 and nonterminals 𝑽�𝑁 
along with the form of possible production rules. 
As soon as the above sets are determined,  
the order of 𝑷��⃗  must also be determined. Thus, 
the binary representation is well defined. It is 
also obvious that two grammar differing by only 
one production rule have two representations 
differing by only one bit. 
 
3. Simple binary representation of 

noncontracting grammars of  
order 2 

 
Assume that for all grammars 𝐺 in 𝒮 the set of 
terminals 𝑽�𝑇 contains as many elements as 𝑽�𝑁 
and for each 𝜇 ∈ 𝑽�𝑁 there exists exactly one 
𝛾 ∈ 𝑽�𝑇 and exactly one production of the form 
(4), that is 𝜇 → 𝛾, that belongs to 𝑷�. Given 𝑽�𝑁 
and 𝑷� let us now define the order 𝑷��⃗ . Assume 
that first group of bits in the constructed 
representation is associated with productions of 
the form (2). Next, those of the form (3).  

The productions of the form (4) can be omitted 
in the binary representation as these are always 
the same, independently of the underlying 
grammar 𝐺. 

First, note that the productions of the form 
(2) and (3) have 3 or 4 nonterminal symbols, 
respectively. Hence, there can be Υ3 or Υ4 such 
possible productions, respectively, where 
Υ = �𝑽�𝑁� = �𝑽�𝑇�. Thus, the overall structure of 
the binary representation can be split into 2 
groups as follows: 
 

ℬ(𝐺) = [𝑏1, … , 𝑏Υ3, 𝑏Υ3+1, … , 𝑏Υ3+Υ4]   (8) 
 
Both of these groups of Υ3 and Υ4 elements, 
respectively, correspond to the production rules 
of the form (2) and (3). The order within each 
group is also of the concern. 

Assume we have an ordered vector of 
terminal symbols 𝑽��⃗ 𝑇 = [𝜇1, 𝜇2, … , 𝜇Υ] and  
the corresponding ordered vector of nonterminal 
symbols 𝑽��⃗ 𝑁 = [𝛾1, 𝛾2, … , 𝛾Υ], such that 𝛾𝑖 → 𝜇𝑖 
are productions of the form (4) assumed to 
belong to 𝑷�, where 𝑖 = 1,2, … , Υ. Let us also 
index the symbols in a production from left to 
right. Then, all the production of the same form 
can be ordered lexicographically. For example, 
the group of productions of the form (3) is 
ordered as follows: 𝛾1 → 𝛾1𝛾1, 𝛾2 → 𝛾1𝛾1, 
..., 𝛾Υ → 𝛾1𝛾1, 𝛾1 → 𝛾2𝛾1, ... , 𝛾Υ → 𝛾Υ𝛾Υ, and 
the productions of the form (4) – from 𝛾1𝛾1 →
𝛾1𝛾1, 𝛾2𝛾1 → 𝛾1𝛾1, and so on... through to 
𝛾Υ𝛾Υ → 𝛾Υ𝛾Υ. 
 
4. Between bit indices and 

production rules 
 
For practical applications, it would be 

essential to quickly identify a particular bit index 
in the binary vector with the production it 
represents. On the other hand, the opposite task 
of quickly finding the bit representing  
a particular production rule would also be of 
importance. 

Given a bit index i and Υ = �𝑽�𝑁�, the first 
step is to determine the form of the 
corresponding production. This is done in  
the following manner: 
if i <= Υ^3 then 
  prod_len := 3; 
else if i <= Υ^3 + Υ^4 then 
  prod_len := 4; 
  i := i - Υ^3; 
end if; 
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Having determined the form of the production 
rule (variable prod_len, saying how many 
symbols it has), the rightmost, the second 
rightmost nonterminal symbols, through to  
the leftmost one, can be found: 
 
x := prod_len; 
while x > 0 do 
  s[x] := (i – 1) mod Υ + 1; 
  i := (i – 1) div Υ + 1; 
  x := x – 1; 
end while; 
 
The table s, indexed from 1 to 𝑝, where 𝑝 is the 
number of nonterminal symbols in the particular 
form of production rule, contains the result. 
s[1] contains the leftmost nonterminal symbol 
number, i.e. s[1]= 𝑎 means it is 𝛾𝑎. Similarly, 
s[𝑝] contains the number of the rightmost 
nonterminal symbol. 

To convert oppositely, i.e. to determine  
the corresponding bit index, given a production 
rule, one needs to first set prod_len variable to 
the number of symbols in the rule and set table s 
elements to numbers representing the 
nonterminal symbols. The interpretation of 
prod_len and s is the same as previously. 
Having set them, the following algorithm gives 
the bit index in the result variable i: 
 
i := 0; 
x := 1; 
while x <= prod_len do 
  i := i + s[x] * Υ ^ (x – 1); 
  if x > 2 then 
    i := i + Υ ^ (x – 1); 
  end if; 
  x := x + 1; 
end while; 
 
5. Optimisation problems for 

discrimination 
 

Assume there is a formal language 𝐿 the 
grammar of which is unknown. The aim is to 
find a feasible grammar that best describes it. 
Assume also that the sentences belonging to this 
language are known. It means that the resulting 
grammar should accept these sentences while 
rejecting all the others. The overall optimisation 
problem can be formulated as follows: Find  
a grammar 𝐺0 = ℬ−1(𝒃0), represented by  
a binary string 𝒃0 ∈ 𝐷, accepting all 𝔗 ∈ 𝑽�𝑇+,  
if 𝔗 ∈ 𝐿. However, 𝐺0 should reject all 𝔘 ∈ 𝑽�𝑇+, 
if 𝔘 ∉ 𝐿. That is, 
 

∀𝔗∈𝐿 𝑓(𝒃0,𝔗) = max𝒃∈𝐷{𝑓(𝒃, 𝔗)},  
∀𝔘∉𝐿 𝑓(𝒃0, 𝔘) = min𝒃∈𝐷{𝑓(𝒃, 𝔘)},  (9) 

 
where: 
𝑓: 𝐷 × 𝑽�𝑇+ → ℝ – some fitness function that 
evaluates the grammar represented by 𝒃 ∈ 𝐷 
against a given sentence from 𝑽�𝑇+, 
𝐷 = {0,1}Ξ – is the domain (the set of all 
possible grammar representations), 
Ξ = Υ3 + Υ4 – the number of bits necessary to 
represent a grammar. 

It is not necessary to find “ideal” 𝐺0. 
Perhaps, for some practical application, it would 
be enough to find one highly fitted to 𝔗, whereas 
sufficiently discriminating from any 𝔘 ≠ 𝔗. 
Thus, it slightly modifies the problem (9) to: 
 

∀𝔗∈𝐿 𝑓(𝒃, 𝔗) → max,   
∀𝔘∉𝐿 𝑓(𝒃, 𝔘) → min,   

for 𝔘 ≠ 𝔗.  (10) 
 
That is, the problem is not strictly aimed at 
finding the correct grammar but a “good 
enough” one. Some properties of a language 
subject to such routine might be revealed, 
perhaps, based on the structure of the grammar 
found – not necessarily a perfect one. 

It is assumed in problem (9) and (10) that 𝑓 
can take values from some continuum domain. 
In the simplest problem, though, 𝑓 usually takes 
either 0, if a sentence is not recognized against  
a given grammar, or 1, if it is recognized indeed. 
 
6. Natural language properties 
 
Assume that not all the sentences of a language 
are known, but having known some of them all 
the others can be deduced in some way. Assume 
it can be deducted in the following way: 
 
Proposition 1 
Let 𝜐 = 𝜒1𝜒2 …𝜒𝑛 be a known sentence in 
language 𝐿, where each 𝜒𝑖 is a subsentence 
consisting of a number of terminal symbols, i.e. 
𝜒𝑖 ∈ 𝑽�𝑇+. Let also 𝜎: {1, … , 𝑛} → {1, … , 𝑛} be an 
𝑛-element permutation. It is postulated that 
another sentence 𝜐′ = 𝜒𝜎(1)𝜒𝜎(2) …𝜒𝜎(𝑛), 
hashing subsentences of 𝜐, belongs to 𝐿 with 
high probability. 
 
This is not necessary that 𝜐′ ∈ 𝐿. Though, it is 
believed to be highly probable. The more chunks 
the sentence is split into and the more hashed 
they are, the less probable is that the resulting 
hashed sentence belongs to 𝐿. Let us define  
the measure, denoted by 𝒵(𝜎), of how “strong” 
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is a particular permutation 𝜎, i.e. how much it 
hashes 𝑣. Then, 

𝒵(𝜎) ≜ 

≜ ��〈𝜎(𝑠1), 𝜎(𝑠2)〉 �
 𝜎(𝑠2) ≠ 𝜎(𝑠1) + 1,

 𝑠2 = 𝑠1 + 1,
𝑠1, 𝑠2 = 1, 2, … , |𝒩| + 1

���. 

(11) 
 
Proposition 2 
Let 𝜐, 𝜐′ and 𝜎 be as in proposition 1. It is 
postulated that the probability Pr{𝜐′ ∈ 𝐿} is 
somehow inversely proportionate to 𝒵(𝜎). 
 

The above propositions are based on 
observations of the natural languages.  
The sentence, in the sense of theory of 
languages, can be the text of some book, an 
article or just a mere sentence in terms of natural 
languages. Its lexemes (terminal symbols) are 
usually natural words. Some languages allow to 
compose a sentence with some freedom in  
the word order – e.g. Polish, Spanish. Some, on 
the other hand, are more strict in that, however 
still give some freedom – e.g. English. Given 
 a natural text, that is a book, an article,  
a sentence, etc., one can split it in 𝑛 − 1 points 
and hash it, i.e. apply some permutation on 
groups of words. The permuted text perhaps still 
can be considered a correct one in the language, 
but this is less likely for highly hashed texts. Let 
us call it the hashing property of a natural 
language. Please note that, if we split a particular 
text in a considerably high number of points and 
hash, some indivisible parts of the text might be 
damaged. The more such points of cut, the more 
the probability of such a consequence. 

Assume now, that there is given a text of an 
unknown origin and hence its language and 
grammar are unknown. It seems barely possible 
that another text written with the same set of 
words exists but not belonging to the language in 
question. In terms of the theory of languages, it 
means that it is almost impossible to have 
another sentence with terminal symbols picked 
up from the same set, whereas it is a sentence 
from another language. It can be heuristically 
assumed, though, that the hashing property 
holds. 

Although it is not always true, the natural 
languages are usually described with as simple 
grammar rules as possible. This means, 
researchers intend to describe the majority of 
correct sentences in a given language with less 
rules. Let us call it the minimal structure 
property. In terms of the theory of languages, 
this means there should be as few production 
rules as possible. This property implicitly 

assumes that the smallest possible grammar will 
describe the language in question while it rejects 
the sentences from another language. That is, if 
only the grammar contained more production 
rules than necessary, it could accept incorrect 
sentences. It should be emphasized here, that  
this is a heuristic assumption only! 
 
7. Optimisation problem for finding 

grammar 
 
Now, let us move on to construct further 
optimisation problems for finding grammars. 
Assuming minimal structure property of  
the language, a new requirement on the number 
of productions is imposed on the optimisation 
problem. Thus, the problem (10) becomes to: 
 

∀𝔗∈𝐿 𝑓(𝒃, 𝔗) → max,   
∀𝔘∉𝐿 𝑓(𝒃, 𝔘) → min,   

for 𝔘 ≠ 𝔗.   
𝒃𝟏𝑇 → min,        (12) 

 
where 𝟏 = [1, 1, … , 1]. 

Assuming the hashing property, further 
transformations of the optimisation problem can 
be introduced. If based on only one sentence, it 
is hardly possible to determine all the 𝔘 ∉ 𝐿 
(while having only one 𝔗 ∈ 𝐿). 

Let us first define a hash function ℎ.  
Of course, one of its necessary parameters is  
the sentence 𝔗 ∈ 𝑽�𝑇+. The other parameters 
should determine the number and the locations 
of splitting points, and the way chunks of  
the base sentence are arranged in the resulting 
text. The latter is most easily expressed with  
the notion of permutation. The hash function is 
defined then as: 
 

ℎ:ℋ → 𝑽�𝑇+  (13) 
 

where: 
ℋ ⊆ 𝑽�𝑇+ × 2ℕ+ × 𝒫 is parameter domain, 
𝒫 – a set of all possible permutations, 
The domain ℋ is such a subset of 𝑽�𝑇+ × 2ℕ+ × 𝒫 
that meets the following constraints: Let 
〈𝔗,𝒩, 𝜎〉 ∈ ℋ, where 𝒩 is a subset of positive 
natural numbers, 𝜎 is some permutation, then 
a) the length of the text minus 1 is the 

maximal possible index of a splitting point 
as this is the number of locations between 
each two neighbouring terminal symbols, 
i.e. 

sup 𝒩 < |𝔗|  (14) 
b) the cardinality of the permutation is equal to 

that of splitting points plus 1, as this is  
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the number of chunks to be arranged around 
the splitting points, i.e. 

 
𝜎: {1, 2, … , |𝒩| + 1} → {1, 2, … , |𝒩| + 1} 

 (15) 
is a bijection on {1, 2, … , |𝒩| + 1}. 

 
The set of splitting point locations contains  
the indices of terminal-symbols in the text 
𝔗 ∈ 𝑽�𝑇+ (𝔗 – passed as the very first parameter 
to ℎ), after which the splitting point is located. 

The more the given sentence 𝔗 is hashed by 
ℎ, the less are the expectations that this sentence 
fits to the (unknown yet) grammar 𝐺0 – as per 
proposition 2. The measure of the hashing level 
is 𝒵(𝜎) – as per (11), and should proportionately 
affect the fitness function 𝑓 when looking for 
extrema. 

Let 𝒩 be a fixed set of splitting locations 
and Ω be some set of permutations as per (15).  
It is not necessary that all possible permutations 
around the splitting points 𝒩 be used. The way 
Ω should be constructed is beyond the scope of 
this article. Let 𝒯 denote a set of sentences 
hashed from 𝔗 with permutations from Ω, paired 
with their corresponding hashing level, i.e. 

 

𝒯 = �〈𝔗′, 𝓏〉 � 
𝔗′ = ℎ(𝔗,𝒩, 𝜎)

𝓏 = 𝒵(𝜎)
𝜎 ∈ Ω

�� (16) 

 
Assume also that some arbitrary nondecreasing 
monotonic function 𝑑: 𝑆 → ℝ+ is given for 
either augmenting (if 𝑑 is considerably 
increasing) or reducing (if 𝑑 is moderately 
increasing) the effects of 𝒵(𝜎), i.e. 
 

𝑑: 𝑆 → ℝ+,     
𝓏1 < 𝓏2 ⇔  𝑑(𝓏1) ≤ 𝑑(𝓏2)   
𝓏1, 𝓏1 ∈ 𝑆          (17) 

 
where 𝑆 ⊆ ℝ covers at least all the possible 
values of 𝒵(𝜎), 𝑑 take positive real values. 

The optimisation problem is based on (12) 
and is derived as follows: The fitness function is 
computed for all 𝔗′ that were generated from 𝔗. 
Since high hashing level 𝓏 of a sentence 𝔗′, as 
expressed by the corresponding pair 〈𝔗′, 𝓏〉 ∈ 𝒯, 
is agreed to make 𝔗′ less important in the overall 
problem, this sentence should have less impact 
on the criterion value. Thus, the compound 
“max” criterion can be produced from those 
maximized ones in (12), by weighting them 
appropriately. 
 

�
𝑓(𝒃,𝔗′)
𝑑(𝓏)

〈𝔗′,𝓏〉∈𝒯

 → max, 

  
𝒃𝟏𝑇 → min,        (18) 

 
This is a two criteria model. The functions 𝑓 and 
𝑑 should be arbitrarily chosen. The above 
formulas give only general hints on how to do it. 
The 𝑓 should be the result of some algorithm 
testing the membership of 𝔗′ in 𝐿(𝐺), while 
𝐺 = 𝐺(𝒃). 

Instead of minimizing criteria, one can just 
impose a limit on the number of productions. 
Thus, the problem reduces to a single criteria 
one subject to a limit on productions. That is, 
 

�
𝑓(𝒃,𝔗′)
𝑑(𝓏)

〈𝔗′,𝓏〉∈𝒯

 → max, 

  
subject to 
 

𝒃𝟏𝑇 ≤ 𝐵,        (19) 
 
where 𝐵 is the maximal allowed number of 
production rules. 

The domain of the optimisation problem 
can be further constrained. Let 𝔅 denote  
the domain. Then, the problem (19) can have  
the general form: 
 

�
𝑓(𝒃,𝔗′)
𝑑(𝓏)

〈𝔗′,𝓏〉∈𝒯

 → max, 

  
subject to 
 

𝒃 ∈ 𝔅.         (20) 
 
Of course, 𝔅 can incorporate the constraint as in 
(19), and perhaps some other. 
 
Example 1 
Let 𝔗 = 𝑎𝑏𝑎𝑏 be a sentence from an unknown 
language (generated by some unknown 
grammar). The terminal symbols 𝑉𝑇 = {𝑎, 𝑏} are 
assumed, by definition, to correspond to some 
nonterminal symbols, e.g. 𝐴, 𝐵 ∈ 𝑉𝑁. Thus,  
the productions 𝐴 → 𝑎 and 𝐵 → 𝑏 are assumed 
to be in every grammar considered in  
the problem. Assume further that the goal is to 
find a grammar of at most 4 nonterminals.  
Let these be 𝑉𝑁 = {𝐴, 𝐵, 𝐷, 𝑆}. Finally, assume 
that, apart from the aforementioned productions, 
all the other productions are of the form 
𝑉 → 𝑊𝑌, i.e. that those of the form 𝑉𝑊 → 𝑌𝑍 
are disallowed. 
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Since Υ = 4 here, the number of bits to 
represent the potential grammar is Υ3 + Υ4 =
= 43 + 44 = 64 + 256 = 320. The 320 
productions corresponding to each bit of  
the binary representation are: 𝐴 → 𝐴𝐴, 𝐵 → 𝐴𝐴, 
𝐷 → 𝐴𝐴, 𝑆 → 𝐴𝐴, 𝐴 → 𝐵𝐴, 𝐵 → 𝐵𝐴, 𝐷 → 𝐵𝐴, 
𝑆 → 𝐵𝐴,..., 𝑆 → 𝑆𝑆, 𝐴𝐴 → 𝐴𝐴, 𝐵𝐴 → 𝐴𝐴, ..., 
𝑆𝑆 → 𝑆𝑆. Of course the last 256 productions are 
disallowed, hence the domain is defined as 
𝔅 = {[𝑏1, 𝑏2, … , 𝑏320] ∈ {0,1}320  | 𝑏65 = 𝑏66

= ⋯ = 𝑏320 = 0}. 
Let the fitness function 𝑓 be defined as follows: 
If the CYK algorithm (see [5], [11], [7]) gives  
a nonempty set of symbols that derive the whole 
sentence in a grammar 𝐺 = ℬ−1(𝒃), the function 
takes value of 1. If, on the other hand,  
the subsentence 𝔖 of the sentence 𝔗 is among 
the longest ones for which a nonterminal was 
found, then the fitness function value is  
a fraction 𝑓(𝑏, 𝔗) = |𝔖|

|𝔗|� . The motivation to 

define 𝑓 in such a way is that, perhaps,  
the longer the substring that can be derived with 
the grammar found so far, the closer is  
the routine to the optimum. 

Let 𝒃1 ∈ {0,1}320 have 1 at the 7th, 20th 
and 33rd positions (0 at the other ones), i.e. 𝒃1 = 
= 0000001000000000000100000000000010 …  
– it is easily seen that the grammar  
𝐺1 = ℬ−1(𝒃1) contains the productions  
𝐷 → 𝐵𝐴, 𝑆 → 𝐴𝐵 and 𝐴 → 𝐴𝐷, which result 
from the above value of 𝑏 explicitly. Of course, 
it also implicitly contains 𝐴 → 𝑎 and 𝐵 → 𝑏.  
The sentence 𝔗 = 𝑎𝑏𝑎𝑏 is directly reduced to 
𝐴𝐵𝐴𝐵 with those implicit production rules and 
then the CYK algorithm continues. With  
the grammar 𝐺1 its results are as follows: 
 
𝑋14 = {𝑆}  
𝑋13 = {𝐴} 𝑋24 = ∅ 
𝑋12 = {𝑆} 𝑋23 = {𝐷} 𝑋34 = {𝑆}  
𝑋11 = {𝐴} 𝑋22 = {𝐵} 𝑋33 = {𝐴} 𝑋44 = {𝐵} 
 
Hence, 𝑓(𝒃1,𝔗) = 1, as it has been found that 
the whole sentence 𝑎𝑏𝑎𝑏 can be derived with 𝐺1 
starting from the 𝑆. 

Let now 𝒃2 ∈ {0,1}320 have 1 at the 20th 
position and 0 elsewhere, that is  
𝒃2 = 000000000000000000010 … 0. Then, 
the grammar 𝐺2 = ℬ−1(𝒃2) contains only the 
production 𝑆 → 𝐴𝐵. The following table shows 
the results of the CYK algorithm on this 
grammar: 
 
 
 

𝑋14 = ∅  
𝑋13 = ∅ 𝑋24 = ∅ 
𝑋12 = {𝑆} 𝑋23 = ∅ 𝑋34 = {𝑆}  
𝑋11 = {𝐴} 𝑋22 = {𝐵} 𝑋33 = {𝐴} 𝑋44 = {𝐵} 
 
The longest substrings are those represented by 
𝑋12 and 𝑋34, i.e. of length 2 Thus,  
𝑓(𝒃2,𝔗) = 2

4� = 0.5 < 1. 
Let also 𝒃3 ∈ {0,1}320 have 1 at the 20th 

and 64th positions, and 0 elsewhere.  
The grammar 𝐺3 = ℬ−1(𝒃3) it represents 
contains two productions: 𝑆 → 𝐴𝐵 and 𝑆 → 𝑆𝑆. 
The result of the CYK algorithm is as follows: 

 
𝑋14 = {𝑆}  
𝑋13 = {𝐴} 𝑋24 = ∅ 
𝑋12 = {𝑆} 𝑋23 = ∅ 𝑋34 = {𝑆}  
𝑋11 = {𝐴} 𝑋22 = {𝐵} 𝑋33 = {𝐴} 𝑋44 = {𝐵} 
 
Thus, 𝑓(𝒃3,𝔗) = 1 = 𝑓(𝒃1,𝔗). 
 
Example 2 
Let us consider the context-sensitive parsing 
algorithm of Woods, as in [10]. The allowed 
production rule forms are: context-free 𝐴 → 𝐵𝐶, 
left context-sensitive 𝐴𝐵 → 𝐴𝐶 and right 
context-sensitive 𝐴𝐵 → 𝐶𝐵. Assume the 
nonterminal symbols set consists of 3 items.  
It is easily seen that, among  
Ξ = Υ3 + Υ4 = 33 + 34 = 27 + 81 = 108 
possible productions, there are 3 ∙ 33 = 81 
allowed. This is due to the fact that left and right 
context-sensitive rules have 3 degree of freedom 
each, as many as the context-free rules. 

The domain 𝔅 consists of such 
[𝑏1, 𝑏2, … , 𝑏108] ∈ {0,1}108 that must have 
𝑏𝑖 = 0 for 𝑖 = 32, 33, 35, 36, 40, 42, 43, 45, 49, 
50, 52, 53, 56, 57, 62, 63, 64, 66, 70, 72, 73, 74, 
79, 80, 83, 84, 86, 87, 91, 93, 94, 96, 100, 101, 
103, 104. Among the 108 rules 𝐴 → 𝐴𝐴, 
𝐵 → 𝐴𝐴, ..., 𝐶 → 𝐶𝐶, 𝐴𝐴 → 𝐴𝐴, 𝐵𝐴 → 𝐴𝐴, 
..., 𝐶𝐶 → 𝐶𝐶, the above indices point out  
the “forbidden” rules. For instance, the 32nd 
production rule is 𝐵𝐵 → 𝐴𝐴 and has 4 symbols, 
but is neither left nor right context-sensitive rule.  
 
Example 3 
Let the terminals 𝑉𝑇 consist of 4 symbols 
(lexemes): “el”, “gato”, “es” and “negro”, i.e. 
𝑉𝑇 = {<el>, <gato>, <es>, <negro>}. Let us 
have the sentence 𝔗 = “el gato es negro”. There 
are many possible permutations of 𝔗, for 
instance 𝔗′ =”negro es el gato” or 𝔗′′ =”es 
negro el gato”. It is believed that 𝔗′ and 𝔗′′ 
form correct sentences in some language, hence 
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they can be used as an input to the optimisation 
problem of finding grammar. This is true in fact, 
as all of the above sentences are taken from  
the Spanish language and mean “the cat is 
black”. It is only a matter of style to change  
the word order. However, 𝔗′′′ = “negro gato es 
el” is rather incorrect in Spanish (unless “el” is 
replaced by “él”, but then the sentence would 
have different meaning: “black cat is him”). 
 
Example 4 
Let 𝔗, 𝑉𝑁, 𝔅, 𝒃1 and 𝒃3 be as in example 1. 
Both 𝑏1 and 𝑏3 give the same value of the fitting 
function, thus, are considered equally. However, 
𝒃3 represents a grammar of 2 production rules 
only, while 𝑏1 – that of 3 rules. Thus, 𝒃3 is more 
compact and can be considered to fit better to  
the “min” criterion in (18).  
That is, 𝒃3𝟏𝑇 = 2 < 3 = 𝒃1𝟏𝑇. 
 
8. Compacting the representation 
 
The binary representation ℬ(𝐺) is long enough 
to make a practical application difficult. For 
example, if Υ = 26 (the length of the English 
alphabet), then the number of representation bits 
is Ξ = Υ3 + Υ4 = 456552. Some techniques to 
reduce the domain dimension seems crucial for 
the problem. 

An expected grammar should not contain 
too many production rules. Thus, the binary 
representation might be a sparse vector, i.e. only 
a very limited number of its bits might be 
nonzero. If so, the representation can be shrunk 
to a map on a limited domain of bit indices 
taking binary values. It is only necessary for 
nonzero bits to be represented in such a sparse 
vector. Anyway, the zeros are also allowed 
there. Let 𝓋 denote a sparse quasi-vector 
(called sparse vector, in short) for ℬ(𝐺).  
Then let 

𝓋: 𝐼 → {0,1},   (21) 
where 
 

𝐼 = {𝑖 | 𝑏𝑖 ≠ 0} ⊆ 𝐼 ⊆ {1, 2, … , Ξ}, (22) 
𝓋(𝑖) = 𝑏𝑖,   (23) 

 
for ℬ(𝐺) of the form as per (1) with 𝑛 = Ξ. 𝐼 
will be called support. Of course, there might 
exist more than one sparse quasi-vector for  
a particular ℬ(𝐺). That means, a sparse vector 𝓋 
can be extended to new indices that map to  
the value of 0, i.e. we can add a new index to 𝐼, 
while 𝓋 takes 0 on it. This way, a sparse binary 
representation can be of use in practical 
applications. 

For some reasons, bits can be organized 
into pairwise disjoined sets covering all  
the nonzero values. Let 𝒟𝓋 denote the domain of 
𝓋, i.e. for 𝓋 as in (20) this is 𝒟𝓋 = 𝐼. A sparse 
multi quasi-vector 𝓿 is a family of sparse 
quasi-vectors 𝓋𝑘 over an index set 𝒦, 
 

𝓿 = {𝓋𝑘}𝑘∈𝒦,   (24) 
 
where each 𝑘 ∈ 𝒦 can be interpreted as  
a “subgroup” representative, and subject to 
 

𝒟𝓋𝑘1 ∩ 𝒟𝓋𝑘2 = ∅,  (25) 
 
for 𝑘1, 𝑘2 ∈ 𝒦 and 𝑘1 ≠ 𝑘2, and 
 

{𝑖 | 𝑏𝑖 ≠ 0} ⊆ �𝒟𝓋𝑘
𝑘∈𝒦

⊆ {1, 2, … , Ξ}. 

 (26) 
 
Example 5 
Let 𝒃1 be as in example 1. One of its possible 
compact representations is: the domain  
𝐼 = {7,20,33} = 𝐼; and the sparse vector 
expressed by the mapping on 𝐼 where  
𝓋(7) = 𝓋(20) = 𝓋(33) = 1. Of course,  
the sparse vector might be extended to 𝓋′  
on domain 𝐼′ = {1,2, … 33}, where  
𝓋′(7) = 𝓋′(20) = 𝓋′(33) = 1 and 𝓋′(𝑖) = 0 
for 𝑖 ∉  {7, 20, 33}. 
 
Example 6 
Let further 𝒃1 be as in example 1.  
Let 𝐼′ = {1, … ,10}, 𝐼′′ = {11, … ,20},  
𝐼′′′ = {31, … ,40}, 𝓋′: 𝐼′ → {0,1} such that 
𝓋′(𝑖) = 1 for 𝑖 = 7 and 0 – otherwise, 
𝓋′′: 𝐼′′ → {0,1} such that 𝓋′′(𝑖) = 1 for 𝑖 = 20 
and 0 – otherwise, 𝓋′′′: 𝐼′′′ → {0,1} such that 
𝓋′′′(𝑖) = 1 for 𝑖 = 33 and 0 – otherwise. 
𝓿 = {𝓋′,𝓋′′, 𝓋′′′} is one of the possible sparse 
multi vectors representing 𝐺1 = ℬ−1(𝒃1).  
The domains of the sparse vectors belonging to 
it can cover more than just the support 𝐼. 
 
9. Conclusion 
 
The idea outlined here in this paper is to find  
a grammar for some unknown text (considered 
“sentence”, in terms of the theory of languages). 
It is not necessary for the resulting grammar to 
be exact, though. The grammar structure can be 
“approximated” in the above routine, yet still 
giving some overview of the properties of this 
unknown language. The properties are meant to 
be somehow “hidden” in this structure, but its 
interpretation is beyond the scope of this article. 
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Further research should be undertaken to 
find parsing algorithms that will allow to 
construct appropriate fitting functions. That is, it 
should be easy to compute a fitting function 
value based on such algorithms. Moreover, it is 
desirable that some partial results from such 
algorithms should be used for computing  
the fitting function value for the nearest 
arguments, so as to speed up the whole routine. 
Approximate, or heuristic, algorithms might also 
be of use. This is due to the fact that, as already 
mentioned, an approximate grammar structure 
might be sufficient for some purposes like e.g. 
comparing two different styles of writing. 

Having built the fitting function, 
optimisation methods should be chosen to solve 
the problems shown in this article. Binary 
optimisation problems have well known methods 
to solve. However, in view of the fact that the 
grammar finding problem requires a lot of binary 
variables, some heuristic methods, like e.g. 
quantum-inspired genetic algorithms, should be 
considered first. 
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Odkrywanie gramatyki dla nieznanego tekstu jako zadanie 

optymalizacyjne 
 

P.A. RYSZAWA 
 
Niniejszy artykuł dotyczy problemu odkrywania nieznanej gramatyki z próbki tekstu. Metody odkrywania 
zostały sformułowane jako zadania optymalizacyjne oparte na binarnej reprezentacji gramatyk kontekstowych. 
Reprezentacja ta, początkowo jako najdłuższy możliwy wektor bitów, ostatecznie została skrócona do zwięzłej 
postaci, nadającej się do wykorzystania praktycznego. Dla uproszczenia uwzględniono tylko gramatyki 
nieskracające rzędu 2, z wyłączeniem produkcji postaci 𝑃: 𝐴 → 𝐵 i tych wyprowadzających łańcuch pusty,  
tj. 𝑃: 𝐴 → 𝜀. 
 
Słowa kluczowe: język kontekstowy, gramatyka formalna, gramatyka nieskracająca, reprezentacja binarna, 
zadanie optymalizacyjne. 
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