
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 6 15−22 (2017)

 15

Discovering grammar of an unknown text as an optimisation problem

P.A. RYSZAWA
pawel.ryszawa@wat.edu.pl

Military University of Technology, Faculty of Cybernetics

Urbanowicza Str. 2, 00-908 Warsaw, Poland

This paper concerns the problem of discovering an unknown grammar from a text sample. The discovering
methods are formulated as optimisation problems based on a binary representation of context-sensitive
grammars. The representation starts with a longest possible vector of bits to, finally, make it more compact so
as to be usable in practical applications. For the sake of simplicity, considered are only noncontracting
(length-preserving) grammars of order 2, excluding productions of the form 𝑃:𝐴 → 𝐵 and those deriving
the empty string, i.e 𝑃: 𝐴 → 𝜀.

Keywords: context-sensitive language, formal grammar, noncontracting grammar, binary representation,
optimisation problem.

1. Introduction

The notion of the formal grammar needs some
representation, if we want to use it in any
algorithm run on a computer. Here, in this
article, the objective is to develop a binary
representation, easy to use and to formulate an
optimisation problem. A binary representation
ℬ(𝐺) of a grammar 𝐺 is considered to be
a string of the form:

ℬ(𝐺) = [𝑏1, 𝑏2, … , 𝑏Ξ], (1)

where Ξ is its (fixed) length, 𝑏𝑖 ∈ {0,1}, and
𝑖 = 1,2, … , Ξ.

It is assumed throughout this paper
that each production 𝑃𝑖 in 𝐺 is of one of
the following forms:

𝑃𝑖: 𝐴 → 𝐵𝐶, (2)

𝑃𝑖: 𝐴𝐵 → 𝐶𝐷, (3)

where 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝑉𝑁 are nonterminal symbols,
or

𝑃𝑖: 𝐴 → 𝑎, (4)

where 𝐴 ∈ 𝑉𝑁 is a nonterminal symbol and
𝑎 ∈ 𝑉𝑇 is a terminal symbol. The productions of
the form 𝑃𝑖: 𝐴 → 𝐵 are ruled out as redundant.
The forms (2), (3) and (4) are sufficient to
represent a noncontracting grammar of order 2
– a type of grammar weakly equivalent to
noncontracting grammars of any order, and
hence weakly equivalent to any context-sensitive
grammar (see [3]).

It is required, of course, that each grammar
𝐺 must have its own unique binary
representation ℬ(𝐺). As a rule of thumb, two
similar grammars should also have similar
representations. “Similar” means here that some
metric could be defined, in which two
short-distant grammars have two short-distant
corresponding representations. Likewise,
the binary representations of two long-distant
grammars should also be long-distant.

Finally, it is also assumed that there exists
a space of grammars. Since it is needed for
formulating an optimisation problem on this
space, the number of possible nonterminal and
terminal symbols, as well as the number of
possible productions, is limited and considered
constant. Thus, the space 𝒮 = 𝒮�𝑽�𝑁,𝑽�𝑇� of
grammars of the form 𝐺 = 〈𝑉𝑁, 𝑉𝑇, 𝑃, 𝑆〉 could
be defined as 𝒮 = �𝐺 | 𝑉𝑁 ⊆ 𝑽�𝑁 ∧ 𝑉𝑇 ⊆ 𝑽�𝑇�. 𝑽�𝑁
is the maximal set of nonterminal nodes, i.e.
every nonterminal symbol of a grammar
𝐺 ∈ 𝒮�𝑽�𝑁,𝑽�𝑇� belongs to 𝑽�𝑁. Likewise, 𝑽�𝑇 is
the maximal set of terminal nodes, i.e. every
terminal symbol of a grammar 𝐺 ∈ 𝒮�𝑽�𝑁,𝑽�𝑇�
belongs to 𝑽�𝑇. Since adding new elements to 𝑉𝑁
or 𝑉𝑇, but without adding any production to 𝑃,
does not change the grammar 𝐺, i.e. both are still
weakly equivalent, the space 𝒮 of grammars can
also be defined as

𝒮�𝑽�𝑁,𝑽�𝑇� = �𝐺 | 𝑉𝑁 = 𝑽�𝑁 ∧ 𝑉𝑇 = 𝑽�𝑇�. (5)

That is, each 𝐺 = 〈𝑉𝑁, 𝑉𝑇, 𝑃, 𝑆〉 ∈ 𝒮 can be
extended to 𝐺 = 〈𝑽�𝑁,𝑽�𝑇, 𝑃, 𝑆〉 and still not

Paweł Aleksander Ryszawa, Discovering grammar of an unknown text as an optimisation problem

 16

affecting the language generated by 𝐺. From
now on, the latter definition is used in this paper.

2. General concept of binary

representations of grammars

Assume we have a universal set 𝑽�𝑁 of
nonterminals, a universal set 𝑽�𝑇 of terminals,
and a universal set 𝑷� of production rules.
The maximal space of grammars, that we can
define in more detail now, is

𝒮 = �𝐺 | 𝑉𝑁 = 𝑽�𝑁 ∧ 𝑉𝑇 = 𝑽�𝑇 ∧ 𝑃 ⊆ 𝑷��. (6)

Hence, two distinct grammars in the space 𝒮 are
distinguishable only by their subsets of
production rules.

If enumerating all the possible production
rules from 𝑷�, i.e. mapping each production rule
to its unique index, all the grammars in 𝒮 would
be encoded with a binary string as follows: Let
𝑷��⃗ = [𝑃1, 𝑃2, … , 𝑃Ξ] be an ordered vector of all
possible productions, indexed from 1 through Ξ,
where, of course, Ξ = �𝑷��. Now, as per
the definition (1), let ℬ(𝐺) = [𝑏1, 𝑏2, … , 𝑏Ξ]
be such that:

𝑏𝑖 = �0, 𝑃𝑖 ∉ 𝑃,
1, 𝑃𝑖 ∈ 𝑃,

� (7)

where 𝑃 is the set of production rules of 𝐺.

The general concept of binary
representations depends on how 𝒮 is defined.
This, in turn, depends on assumed sets of
possible terminals 𝑽�𝑇 and nonterminals 𝑽�𝑁
along with the form of possible production rules.
As soon as the above sets are determined,
the order of 𝑷��⃗ must also be determined. Thus,
the binary representation is well defined. It is
also obvious that two grammar differing by only
one production rule have two representations
differing by only one bit.

3. Simple binary representation of

noncontracting grammars of
order 2

Assume that for all grammars 𝐺 in 𝒮 the set of
terminals 𝑽�𝑇 contains as many elements as 𝑽�𝑁
and for each 𝜇 ∈ 𝑽�𝑁 there exists exactly one
𝛾 ∈ 𝑽�𝑇 and exactly one production of the form
(4), that is 𝜇 → 𝛾, that belongs to 𝑷�. Given 𝑽�𝑁
and 𝑷� let us now define the order 𝑷��⃗ . Assume
that first group of bits in the constructed
representation is associated with productions of
the form (2). Next, those of the form (3).

The productions of the form (4) can be omitted
in the binary representation as these are always
the same, independently of the underlying
grammar 𝐺.

First, note that the productions of the form
(2) and (3) have 3 or 4 nonterminal symbols,
respectively. Hence, there can be Υ3 or Υ4 such
possible productions, respectively, where
Υ = �𝑽�𝑁� = �𝑽�𝑇�. Thus, the overall structure of
the binary representation can be split into 2
groups as follows:

ℬ(𝐺) = [𝑏1, … , 𝑏Υ3, 𝑏Υ3+1, … , 𝑏Υ3+Υ4] (8)

Both of these groups of Υ3 and Υ4 elements,
respectively, correspond to the production rules
of the form (2) and (3). The order within each
group is also of the concern.

Assume we have an ordered vector of
terminal symbols 𝑽��⃗ 𝑇 = [𝜇1, 𝜇2, … , 𝜇Υ] and
the corresponding ordered vector of nonterminal
symbols 𝑽��⃗ 𝑁 = [𝛾1, 𝛾2, … , 𝛾Υ], such that 𝛾𝑖 → 𝜇𝑖
are productions of the form (4) assumed to
belong to 𝑷�, where 𝑖 = 1,2, … , Υ. Let us also
index the symbols in a production from left to
right. Then, all the production of the same form
can be ordered lexicographically. For example,
the group of productions of the form (3) is
ordered as follows: 𝛾1 → 𝛾1𝛾1, 𝛾2 → 𝛾1𝛾1,
..., 𝛾Υ → 𝛾1𝛾1, 𝛾1 → 𝛾2𝛾1, ... , 𝛾Υ → 𝛾Υ𝛾Υ, and
the productions of the form (4) – from 𝛾1𝛾1 →
𝛾1𝛾1, 𝛾2𝛾1 → 𝛾1𝛾1, and so on... through to
𝛾Υ𝛾Υ → 𝛾Υ𝛾Υ.

4. Between bit indices and

production rules

For practical applications, it would be

essential to quickly identify a particular bit index
in the binary vector with the production it
represents. On the other hand, the opposite task
of quickly finding the bit representing
a particular production rule would also be of
importance.

Given a bit index i and Υ = �𝑽�𝑁�, the first
step is to determine the form of the
corresponding production. This is done in
the following manner:
if i <= Υ^3 then
 prod_len := 3;
else if i <= Υ^3 + Υ^4 then
 prod_len := 4;
 i := i - Υ^3;
end if;

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 6 15−22 (2017)

 17

Having determined the form of the production
rule (variable prod_len, saying how many
symbols it has), the rightmost, the second
rightmost nonterminal symbols, through to
the leftmost one, can be found:

x := prod_len;
while x > 0 do
 s[x] := (i – 1) mod Υ + 1;
 i := (i – 1) div Υ + 1;
 x := x – 1;
end while;

The table s, indexed from 1 to 𝑝, where 𝑝 is the
number of nonterminal symbols in the particular
form of production rule, contains the result.
s[1] contains the leftmost nonterminal symbol
number, i.e. s[1]= 𝑎 means it is 𝛾𝑎. Similarly,
s[𝑝] contains the number of the rightmost
nonterminal symbol.

To convert oppositely, i.e. to determine
the corresponding bit index, given a production
rule, one needs to first set prod_len variable to
the number of symbols in the rule and set table s
elements to numbers representing the
nonterminal symbols. The interpretation of
prod_len and s is the same as previously.
Having set them, the following algorithm gives
the bit index in the result variable i:

i := 0;
x := 1;
while x <= prod_len do
 i := i + s[x] * Υ ^ (x – 1);
 if x > 2 then
 i := i + Υ ^ (x – 1);
 end if;
 x := x + 1;
end while;

5. Optimisation problems for

discrimination

Assume there is a formal language 𝐿 the
grammar of which is unknown. The aim is to
find a feasible grammar that best describes it.
Assume also that the sentences belonging to this
language are known. It means that the resulting
grammar should accept these sentences while
rejecting all the others. The overall optimisation
problem can be formulated as follows: Find
a grammar 𝐺0 = ℬ−1(𝒃0), represented by
a binary string 𝒃0 ∈ 𝐷, accepting all 𝔗 ∈ 𝑽�𝑇+,
if 𝔗 ∈ 𝐿. However, 𝐺0 should reject all 𝔘 ∈ 𝑽�𝑇+,
if 𝔘 ∉ 𝐿. That is,

∀𝔗∈𝐿 𝑓(𝒃0,𝔗) = max𝒃∈𝐷{𝑓(𝒃, 𝔗)},
∀𝔘∉𝐿 𝑓(𝒃0, 𝔘) = min𝒃∈𝐷{𝑓(𝒃, 𝔘)}, (9)

where:
𝑓: 𝐷 × 𝑽�𝑇+ → ℝ – some fitness function that
evaluates the grammar represented by 𝒃 ∈ 𝐷
against a given sentence from 𝑽�𝑇+,
𝐷 = {0,1}Ξ – is the domain (the set of all
possible grammar representations),
Ξ = Υ3 + Υ4 – the number of bits necessary to
represent a grammar.

It is not necessary to find “ideal” 𝐺0.
Perhaps, for some practical application, it would
be enough to find one highly fitted to 𝔗, whereas
sufficiently discriminating from any 𝔘 ≠ 𝔗.
Thus, it slightly modifies the problem (9) to:

∀𝔗∈𝐿 𝑓(𝒃, 𝔗) → max,
∀𝔘∉𝐿 𝑓(𝒃, 𝔘) → min,

for 𝔘 ≠ 𝔗. (10)

That is, the problem is not strictly aimed at
finding the correct grammar but a “good
enough” one. Some properties of a language
subject to such routine might be revealed,
perhaps, based on the structure of the grammar
found – not necessarily a perfect one.

It is assumed in problem (9) and (10) that 𝑓
can take values from some continuum domain.
In the simplest problem, though, 𝑓 usually takes
either 0, if a sentence is not recognized against
a given grammar, or 1, if it is recognized indeed.

6. Natural language properties

Assume that not all the sentences of a language
are known, but having known some of them all
the others can be deduced in some way. Assume
it can be deducted in the following way:

Proposition 1
Let 𝜐 = 𝜒1𝜒2 …𝜒𝑛 be a known sentence in
language 𝐿, where each 𝜒𝑖 is a subsentence
consisting of a number of terminal symbols, i.e.
𝜒𝑖 ∈ 𝑽�𝑇+. Let also 𝜎: {1, … , 𝑛} → {1, … , 𝑛} be an
𝑛-element permutation. It is postulated that
another sentence 𝜐′ = 𝜒𝜎(1)𝜒𝜎(2) …𝜒𝜎(𝑛),
hashing subsentences of 𝜐, belongs to 𝐿 with
high probability.

This is not necessary that 𝜐′ ∈ 𝐿. Though, it is
believed to be highly probable. The more chunks
the sentence is split into and the more hashed
they are, the less probable is that the resulting
hashed sentence belongs to 𝐿. Let us define
the measure, denoted by 𝒵(𝜎), of how “strong”

Paweł Aleksander Ryszawa, Discovering grammar of an unknown text as an optimisation problem

 18

is a particular permutation 𝜎, i.e. how much it
hashes 𝑣. Then,

𝒵(𝜎) ≜

≜ ��〈𝜎(𝑠1), 𝜎(𝑠2)〉 �
 𝜎(𝑠2) ≠ 𝜎(𝑠1) + 1,

 𝑠2 = 𝑠1 + 1,
𝑠1, 𝑠2 = 1, 2, … , |𝒩| + 1

���.

(11)

Proposition 2
Let 𝜐, 𝜐′ and 𝜎 be as in proposition 1. It is
postulated that the probability Pr{𝜐′ ∈ 𝐿} is
somehow inversely proportionate to 𝒵(𝜎).

The above propositions are based on
observations of the natural languages.
The sentence, in the sense of theory of
languages, can be the text of some book, an
article or just a mere sentence in terms of natural
languages. Its lexemes (terminal symbols) are
usually natural words. Some languages allow to
compose a sentence with some freedom in
the word order – e.g. Polish, Spanish. Some, on
the other hand, are more strict in that, however
still give some freedom – e.g. English. Given
 a natural text, that is a book, an article,
a sentence, etc., one can split it in 𝑛 − 1 points
and hash it, i.e. apply some permutation on
groups of words. The permuted text perhaps still
can be considered a correct one in the language,
but this is less likely for highly hashed texts. Let
us call it the hashing property of a natural
language. Please note that, if we split a particular
text in a considerably high number of points and
hash, some indivisible parts of the text might be
damaged. The more such points of cut, the more
the probability of such a consequence.

Assume now, that there is given a text of an
unknown origin and hence its language and
grammar are unknown. It seems barely possible
that another text written with the same set of
words exists but not belonging to the language in
question. In terms of the theory of languages, it
means that it is almost impossible to have
another sentence with terminal symbols picked
up from the same set, whereas it is a sentence
from another language. It can be heuristically
assumed, though, that the hashing property
holds.

Although it is not always true, the natural
languages are usually described with as simple
grammar rules as possible. This means,
researchers intend to describe the majority of
correct sentences in a given language with less
rules. Let us call it the minimal structure
property. In terms of the theory of languages,
this means there should be as few production
rules as possible. This property implicitly

assumes that the smallest possible grammar will
describe the language in question while it rejects
the sentences from another language. That is, if
only the grammar contained more production
rules than necessary, it could accept incorrect
sentences. It should be emphasized here, that
this is a heuristic assumption only!

7. Optimisation problem for finding

grammar

Now, let us move on to construct further
optimisation problems for finding grammars.
Assuming minimal structure property of
the language, a new requirement on the number
of productions is imposed on the optimisation
problem. Thus, the problem (10) becomes to:

∀𝔗∈𝐿 𝑓(𝒃, 𝔗) → max,
∀𝔘∉𝐿 𝑓(𝒃, 𝔘) → min,

for 𝔘 ≠ 𝔗.
𝒃𝟏𝑇 → min, (12)

where 𝟏 = [1, 1, … , 1].

Assuming the hashing property, further
transformations of the optimisation problem can
be introduced. If based on only one sentence, it
is hardly possible to determine all the 𝔘 ∉ 𝐿
(while having only one 𝔗 ∈ 𝐿).

Let us first define a hash function ℎ.
Of course, one of its necessary parameters is
the sentence 𝔗 ∈ 𝑽�𝑇+. The other parameters
should determine the number and the locations
of splitting points, and the way chunks of
the base sentence are arranged in the resulting
text. The latter is most easily expressed with
the notion of permutation. The hash function is
defined then as:

ℎ:ℋ → 𝑽�𝑇+ (13)

where:
ℋ ⊆ 𝑽�𝑇+ × 2ℕ+ × 𝒫 is parameter domain,
𝒫 – a set of all possible permutations,
The domain ℋ is such a subset of 𝑽�𝑇+ × 2ℕ+ × 𝒫
that meets the following constraints: Let
〈𝔗,𝒩, 𝜎〉 ∈ ℋ, where 𝒩 is a subset of positive
natural numbers, 𝜎 is some permutation, then
a) the length of the text minus 1 is the

maximal possible index of a splitting point
as this is the number of locations between
each two neighbouring terminal symbols,
i.e.

sup 𝒩 < |𝔗| (14)
b) the cardinality of the permutation is equal to

that of splitting points plus 1, as this is

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 6 15−22 (2017)

 19

the number of chunks to be arranged around
the splitting points, i.e.

𝜎: {1, 2, … , |𝒩| + 1} → {1, 2, … , |𝒩| + 1}

 (15)
is a bijection on {1, 2, … , |𝒩| + 1}.

The set of splitting point locations contains
the indices of terminal-symbols in the text
𝔗 ∈ 𝑽�𝑇+ (𝔗 – passed as the very first parameter
to ℎ), after which the splitting point is located.

The more the given sentence 𝔗 is hashed by
ℎ, the less are the expectations that this sentence
fits to the (unknown yet) grammar 𝐺0 – as per
proposition 2. The measure of the hashing level
is 𝒵(𝜎) – as per (11), and should proportionately
affect the fitness function 𝑓 when looking for
extrema.

Let 𝒩 be a fixed set of splitting locations
and Ω be some set of permutations as per (15).
It is not necessary that all possible permutations
around the splitting points 𝒩 be used. The way
Ω should be constructed is beyond the scope of
this article. Let 𝒯 denote a set of sentences
hashed from 𝔗 with permutations from Ω, paired
with their corresponding hashing level, i.e.

𝒯 = �〈𝔗′, 𝓏〉 �
𝔗′ = ℎ(𝔗,𝒩, 𝜎)

𝓏 = 𝒵(𝜎)
𝜎 ∈ Ω

�� (16)

Assume also that some arbitrary nondecreasing
monotonic function 𝑑: 𝑆 → ℝ+ is given for
either augmenting (if 𝑑 is considerably
increasing) or reducing (if 𝑑 is moderately
increasing) the effects of 𝒵(𝜎), i.e.

𝑑: 𝑆 → ℝ+,
𝓏1 < 𝓏2 ⇔ 𝑑(𝓏1) ≤ 𝑑(𝓏2)
𝓏1, 𝓏1 ∈ 𝑆 (17)

where 𝑆 ⊆ ℝ covers at least all the possible
values of 𝒵(𝜎), 𝑑 take positive real values.

The optimisation problem is based on (12)
and is derived as follows: The fitness function is
computed for all 𝔗′ that were generated from 𝔗.
Since high hashing level 𝓏 of a sentence 𝔗′, as
expressed by the corresponding pair 〈𝔗′, 𝓏〉 ∈ 𝒯,
is agreed to make 𝔗′ less important in the overall
problem, this sentence should have less impact
on the criterion value. Thus, the compound
“max” criterion can be produced from those
maximized ones in (12), by weighting them
appropriately.

�
𝑓(𝒃,𝔗′)
𝑑(𝓏)

〈𝔗′,𝓏〉∈𝒯

 → max,

𝒃𝟏𝑇 → min, (18)

This is a two criteria model. The functions 𝑓 and
𝑑 should be arbitrarily chosen. The above
formulas give only general hints on how to do it.
The 𝑓 should be the result of some algorithm
testing the membership of 𝔗′ in 𝐿(𝐺), while
𝐺 = 𝐺(𝒃).

Instead of minimizing criteria, one can just
impose a limit on the number of productions.
Thus, the problem reduces to a single criteria
one subject to a limit on productions. That is,

�
𝑓(𝒃,𝔗′)
𝑑(𝓏)

〈𝔗′,𝓏〉∈𝒯

 → max,

subject to

𝒃𝟏𝑇 ≤ 𝐵, (19)

where 𝐵 is the maximal allowed number of
production rules.

The domain of the optimisation problem
can be further constrained. Let 𝔅 denote
the domain. Then, the problem (19) can have
the general form:

�
𝑓(𝒃,𝔗′)
𝑑(𝓏)

〈𝔗′,𝓏〉∈𝒯

 → max,

subject to

𝒃 ∈ 𝔅. (20)

Of course, 𝔅 can incorporate the constraint as in
(19), and perhaps some other.

Example 1
Let 𝔗 = 𝑎𝑏𝑎𝑏 be a sentence from an unknown
language (generated by some unknown
grammar). The terminal symbols 𝑉𝑇 = {𝑎, 𝑏} are
assumed, by definition, to correspond to some
nonterminal symbols, e.g. 𝐴, 𝐵 ∈ 𝑉𝑁. Thus,
the productions 𝐴 → 𝑎 and 𝐵 → 𝑏 are assumed
to be in every grammar considered in
the problem. Assume further that the goal is to
find a grammar of at most 4 nonterminals.
Let these be 𝑉𝑁 = {𝐴, 𝐵, 𝐷, 𝑆}. Finally, assume
that, apart from the aforementioned productions,
all the other productions are of the form
𝑉 → 𝑊𝑌, i.e. that those of the form 𝑉𝑊 → 𝑌𝑍
are disallowed.

Paweł Aleksander Ryszawa, Discovering grammar of an unknown text as an optimisation problem

 20

Since Υ = 4 here, the number of bits to
represent the potential grammar is Υ3 + Υ4 =
= 43 + 44 = 64 + 256 = 320. The 320
productions corresponding to each bit of
the binary representation are: 𝐴 → 𝐴𝐴, 𝐵 → 𝐴𝐴,
𝐷 → 𝐴𝐴, 𝑆 → 𝐴𝐴, 𝐴 → 𝐵𝐴, 𝐵 → 𝐵𝐴, 𝐷 → 𝐵𝐴,
𝑆 → 𝐵𝐴,..., 𝑆 → 𝑆𝑆, 𝐴𝐴 → 𝐴𝐴, 𝐵𝐴 → 𝐴𝐴, ...,
𝑆𝑆 → 𝑆𝑆. Of course the last 256 productions are
disallowed, hence the domain is defined as
𝔅 = {[𝑏1, 𝑏2, … , 𝑏320] ∈ {0,1}320 | 𝑏65 = 𝑏66

= ⋯ = 𝑏320 = 0}.
Let the fitness function 𝑓 be defined as follows:
If the CYK algorithm (see [5], [11], [7]) gives
a nonempty set of symbols that derive the whole
sentence in a grammar 𝐺 = ℬ−1(𝒃), the function
takes value of 1. If, on the other hand,
the subsentence 𝔖 of the sentence 𝔗 is among
the longest ones for which a nonterminal was
found, then the fitness function value is
a fraction 𝑓(𝑏, 𝔗) = |𝔖|

|𝔗|� . The motivation to

define 𝑓 in such a way is that, perhaps,
the longer the substring that can be derived with
the grammar found so far, the closer is
the routine to the optimum.

Let 𝒃1 ∈ {0,1}320 have 1 at the 7th, 20th
and 33rd positions (0 at the other ones), i.e. 𝒃1 =
= 0000001000000000000100000000000010 …
– it is easily seen that the grammar
𝐺1 = ℬ−1(𝒃1) contains the productions
𝐷 → 𝐵𝐴, 𝑆 → 𝐴𝐵 and 𝐴 → 𝐴𝐷, which result
from the above value of 𝑏 explicitly. Of course,
it also implicitly contains 𝐴 → 𝑎 and 𝐵 → 𝑏.
The sentence 𝔗 = 𝑎𝑏𝑎𝑏 is directly reduced to
𝐴𝐵𝐴𝐵 with those implicit production rules and
then the CYK algorithm continues. With
the grammar 𝐺1 its results are as follows:

𝑋14 = {𝑆}
𝑋13 = {𝐴} 𝑋24 = ∅
𝑋12 = {𝑆} 𝑋23 = {𝐷} 𝑋34 = {𝑆}
𝑋11 = {𝐴} 𝑋22 = {𝐵} 𝑋33 = {𝐴} 𝑋44 = {𝐵}

Hence, 𝑓(𝒃1,𝔗) = 1, as it has been found that
the whole sentence 𝑎𝑏𝑎𝑏 can be derived with 𝐺1
starting from the 𝑆.

Let now 𝒃2 ∈ {0,1}320 have 1 at the 20th
position and 0 elsewhere, that is
𝒃2 = 000000000000000000010 … 0. Then,
the grammar 𝐺2 = ℬ−1(𝒃2) contains only the
production 𝑆 → 𝐴𝐵. The following table shows
the results of the CYK algorithm on this
grammar:

𝑋14 = ∅
𝑋13 = ∅ 𝑋24 = ∅
𝑋12 = {𝑆} 𝑋23 = ∅ 𝑋34 = {𝑆}
𝑋11 = {𝐴} 𝑋22 = {𝐵} 𝑋33 = {𝐴} 𝑋44 = {𝐵}

The longest substrings are those represented by
𝑋12 and 𝑋34, i.e. of length 2 Thus,
𝑓(𝒃2,𝔗) = 2

4� = 0.5 < 1.
Let also 𝒃3 ∈ {0,1}320 have 1 at the 20th

and 64th positions, and 0 elsewhere.
The grammar 𝐺3 = ℬ−1(𝒃3) it represents
contains two productions: 𝑆 → 𝐴𝐵 and 𝑆 → 𝑆𝑆.
The result of the CYK algorithm is as follows:

𝑋14 = {𝑆}
𝑋13 = {𝐴} 𝑋24 = ∅
𝑋12 = {𝑆} 𝑋23 = ∅ 𝑋34 = {𝑆}
𝑋11 = {𝐴} 𝑋22 = {𝐵} 𝑋33 = {𝐴} 𝑋44 = {𝐵}

Thus, 𝑓(𝒃3,𝔗) = 1 = 𝑓(𝒃1,𝔗).

Example 2
Let us consider the context-sensitive parsing
algorithm of Woods, as in [10]. The allowed
production rule forms are: context-free 𝐴 → 𝐵𝐶,
left context-sensitive 𝐴𝐵 → 𝐴𝐶 and right
context-sensitive 𝐴𝐵 → 𝐶𝐵. Assume the
nonterminal symbols set consists of 3 items.
It is easily seen that, among
Ξ = Υ3 + Υ4 = 33 + 34 = 27 + 81 = 108
possible productions, there are 3 ∙ 33 = 81
allowed. This is due to the fact that left and right
context-sensitive rules have 3 degree of freedom
each, as many as the context-free rules.

The domain 𝔅 consists of such
[𝑏1, 𝑏2, … , 𝑏108] ∈ {0,1}108 that must have
𝑏𝑖 = 0 for 𝑖 = 32, 33, 35, 36, 40, 42, 43, 45, 49,
50, 52, 53, 56, 57, 62, 63, 64, 66, 70, 72, 73, 74,
79, 80, 83, 84, 86, 87, 91, 93, 94, 96, 100, 101,
103, 104. Among the 108 rules 𝐴 → 𝐴𝐴,
𝐵 → 𝐴𝐴, ..., 𝐶 → 𝐶𝐶, 𝐴𝐴 → 𝐴𝐴, 𝐵𝐴 → 𝐴𝐴,
..., 𝐶𝐶 → 𝐶𝐶, the above indices point out
the “forbidden” rules. For instance, the 32nd
production rule is 𝐵𝐵 → 𝐴𝐴 and has 4 symbols,
but is neither left nor right context-sensitive rule.

Example 3
Let the terminals 𝑉𝑇 consist of 4 symbols
(lexemes): “el”, “gato”, “es” and “negro”, i.e.
𝑉𝑇 = {<el>, <gato>, <es>, <negro>}. Let us
have the sentence 𝔗 = “el gato es negro”. There
are many possible permutations of 𝔗, for
instance 𝔗′ =”negro es el gato” or 𝔗′′ =”es
negro el gato”. It is believed that 𝔗′ and 𝔗′′
form correct sentences in some language, hence

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 6 15−22 (2017)

 21

they can be used as an input to the optimisation
problem of finding grammar. This is true in fact,
as all of the above sentences are taken from
the Spanish language and mean “the cat is
black”. It is only a matter of style to change
the word order. However, 𝔗′′′ = “negro gato es
el” is rather incorrect in Spanish (unless “el” is
replaced by “él”, but then the sentence would
have different meaning: “black cat is him”).

Example 4
Let 𝔗, 𝑉𝑁, 𝔅, 𝒃1 and 𝒃3 be as in example 1.
Both 𝑏1 and 𝑏3 give the same value of the fitting
function, thus, are considered equally. However,
𝒃3 represents a grammar of 2 production rules
only, while 𝑏1 – that of 3 rules. Thus, 𝒃3 is more
compact and can be considered to fit better to
the “min” criterion in (18).
That is, 𝒃3𝟏𝑇 = 2 < 3 = 𝒃1𝟏𝑇.

8. Compacting the representation

The binary representation ℬ(𝐺) is long enough
to make a practical application difficult. For
example, if Υ = 26 (the length of the English
alphabet), then the number of representation bits
is Ξ = Υ3 + Υ4 = 456552. Some techniques to
reduce the domain dimension seems crucial for
the problem.

An expected grammar should not contain
too many production rules. Thus, the binary
representation might be a sparse vector, i.e. only
a very limited number of its bits might be
nonzero. If so, the representation can be shrunk
to a map on a limited domain of bit indices
taking binary values. It is only necessary for
nonzero bits to be represented in such a sparse
vector. Anyway, the zeros are also allowed
there. Let 𝓋 denote a sparse quasi-vector
(called sparse vector, in short) for ℬ(𝐺).
Then let

𝓋: 𝐼 → {0,1}, (21)
where

𝐼 = {𝑖 | 𝑏𝑖 ≠ 0} ⊆ 𝐼 ⊆ {1, 2, … , Ξ}, (22)
𝓋(𝑖) = 𝑏𝑖, (23)

for ℬ(𝐺) of the form as per (1) with 𝑛 = Ξ. 𝐼
will be called support. Of course, there might
exist more than one sparse quasi-vector for
a particular ℬ(𝐺). That means, a sparse vector 𝓋
can be extended to new indices that map to
the value of 0, i.e. we can add a new index to 𝐼,
while 𝓋 takes 0 on it. This way, a sparse binary
representation can be of use in practical
applications.

For some reasons, bits can be organized
into pairwise disjoined sets covering all
the nonzero values. Let 𝒟𝓋 denote the domain of
𝓋, i.e. for 𝓋 as in (20) this is 𝒟𝓋 = 𝐼. A sparse
multi quasi-vector 𝓿 is a family of sparse
quasi-vectors 𝓋𝑘 over an index set 𝒦,

𝓿 = {𝓋𝑘}𝑘∈𝒦, (24)

where each 𝑘 ∈ 𝒦 can be interpreted as
a “subgroup” representative, and subject to

𝒟𝓋𝑘1 ∩ 𝒟𝓋𝑘2 = ∅, (25)

for 𝑘1, 𝑘2 ∈ 𝒦 and 𝑘1 ≠ 𝑘2, and

{𝑖 | 𝑏𝑖 ≠ 0} ⊆ �𝒟𝓋𝑘
𝑘∈𝒦

⊆ {1, 2, … , Ξ}.

 (26)

Example 5
Let 𝒃1 be as in example 1. One of its possible
compact representations is: the domain
𝐼 = {7,20,33} = 𝐼; and the sparse vector
expressed by the mapping on 𝐼 where
𝓋(7) = 𝓋(20) = 𝓋(33) = 1. Of course,
the sparse vector might be extended to 𝓋′
on domain 𝐼′ = {1,2, … 33}, where
𝓋′(7) = 𝓋′(20) = 𝓋′(33) = 1 and 𝓋′(𝑖) = 0
for 𝑖 ∉ {7, 20, 33}.

Example 6
Let further 𝒃1 be as in example 1.
Let 𝐼′ = {1, … ,10}, 𝐼′′ = {11, … ,20},
𝐼′′′ = {31, … ,40}, 𝓋′: 𝐼′ → {0,1} such that
𝓋′(𝑖) = 1 for 𝑖 = 7 and 0 – otherwise,
𝓋′′: 𝐼′′ → {0,1} such that 𝓋′′(𝑖) = 1 for 𝑖 = 20
and 0 – otherwise, 𝓋′′′: 𝐼′′′ → {0,1} such that
𝓋′′′(𝑖) = 1 for 𝑖 = 33 and 0 – otherwise.
𝓿 = {𝓋′,𝓋′′, 𝓋′′′} is one of the possible sparse
multi vectors representing 𝐺1 = ℬ−1(𝒃1).
The domains of the sparse vectors belonging to
it can cover more than just the support 𝐼.

9. Conclusion

The idea outlined here in this paper is to find
a grammar for some unknown text (considered
“sentence”, in terms of the theory of languages).
It is not necessary for the resulting grammar to
be exact, though. The grammar structure can be
“approximated” in the above routine, yet still
giving some overview of the properties of this
unknown language. The properties are meant to
be somehow “hidden” in this structure, but its
interpretation is beyond the scope of this article.

Paweł Aleksander Ryszawa, Discovering grammar of an unknown text as an optimisation problem

 22

Further research should be undertaken to
find parsing algorithms that will allow to
construct appropriate fitting functions. That is, it
should be easy to compute a fitting function
value based on such algorithms. Moreover, it is
desirable that some partial results from such
algorithms should be used for computing
the fitting function value for the nearest
arguments, so as to speed up the whole routine.
Approximate, or heuristic, algorithms might also
be of use. This is due to the fact that, as already
mentioned, an approximate grammar structure
might be sufficient for some purposes like e.g.
comparing two different styles of writing.

Having built the fitting function,
optimisation methods should be chosen to solve
the problems shown in this article. Binary
optimisation problems have well known methods
to solve. However, in view of the fact that the
grammar finding problem requires a lot of binary
variables, some heuristic methods, like e.g.
quantum-inspired genetic algorithms, should be
considered first.

10. Bibliography

[1] Boyd S., Vandenberghe L., Convex

Optimization, 7th Edition, Cambridge
University Press, 2009.

[2] Chudy M., Wybrane algorytmy
optymalizacji, EXIT, 2014.

[3] Foryś M., Foryś W., Teoria automatów
i języków formalnych, EXIT, 2005.

[4] Galas Z., Nykowski I., Żółkiewski Z.,
Programowanie wielokryterialne, PWE,
1987.

[5] Hopcroft J.E., Motwani R., Ullman J.D.,
Introduction to Automata Theory,
Languages and Computation, 2nd Edition,
Pearson Education, 2001.

[6] Kusiak J., Danielewska-Tułecka A.,
Oprocha P., Optymalizacja, PWN SA,
2009.

[7] Linz P., An Introduction to Formal
Languages and Automata, 5th Edition,
Jones & Bartlett Learning, 2012.

[8] Martin J.C., Introduction to Languages and
the Theory of Computation, 4th Edition,
McGraw-Hill, 2011.

[9] Taha H. A., Operations research:
An Introduction, 8th Edition, Pearson
Education, 2008.

[10] Woods W.A., “Context-Sensitive Parsing”,
Communications of the ACM, Vol. 13,
No. 7, 437–445 (1970).

[11] Younger D.H., “Recognition and Parsing of
Context-Free Grammars in Time n3”,
Information and Control, Vol. 10, Issue 2,
189–208 (1967).

Odkrywanie gramatyki dla nieznanego tekstu jako zadanie

optymalizacyjne

P.A. RYSZAWA

Niniejszy artykuł dotyczy problemu odkrywania nieznanej gramatyki z próbki tekstu. Metody odkrywania
zostały sformułowane jako zadania optymalizacyjne oparte na binarnej reprezentacji gramatyk kontekstowych.
Reprezentacja ta, początkowo jako najdłuższy możliwy wektor bitów, ostatecznie została skrócona do zwięzłej
postaci, nadającej się do wykorzystania praktycznego. Dla uproszczenia uwzględniono tylko gramatyki
nieskracające rzędu 2, z wyłączeniem produkcji postaci 𝑃: 𝐴 → 𝐵 i tych wyprowadzających łańcuch pusty,
tj. 𝑃: 𝐴 → 𝜀.

Słowa kluczowe: język kontekstowy, gramatyka formalna, gramatyka nieskracająca, reprezentacja binarna,
zadanie optymalizacyjne.

	Discovering grammar of an unknown text as an optimisation problem
	P.A. Ryszawa
	Military University of Technology, Faculty of Cybernetics
	Keywords: context-sensitive language, formal grammar, noncontracting grammar, binary representation, optimisation problem.

