PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A numerical analysis of selected elastic-plastic fracture parameters for DEN(T) plates under plane strain conditions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper provides a numerical analysis of selected parameters of fracture mechanics for double-edge notched specimens in tension, DEN(T), under plane strain conditions. The analysis was performed using the elastic-plastic material model. The study involved determining the stress distribution near the crack tip for both small and large deformations. The limit load solution was verified. The J-integral, the crack tip opening displacement, and the load line displacement were determined using the numerical method to propose the new hybrid solutions for calculating these parameters. The investigations also aimed to identify the influence of the plate geometry and the material characteristics on the parameters under consideration. This paper is a continuation of the author’s previous studies and simulations in the field of elastic-plastic fracture mechanics.
Rocznik
Strony
49--80
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Kielce University of Technology Faculty of Mechatronics and Mechanical Engineering Department of Manufacturing Engineering and Metrology Al. 1000-lecia PP 7, 25-314 Kielce, POLAND
Bibliografia
  • [1] Hutchinson J.W. (1968): Singular behaviour at the end of a tensile crack in a hardening material. – Journal of the Mechanics and Physics of Solids, vol.16, pp.13-31.
  • [2] Rice J.R. and Rosengren G.F. (1968): Plane strain deformation near a crack tip in a power-law hardening material. – Journal of the Mechanics and Physics of Solids, vol.16, pp.1-12.
  • [3] Gałkiewicz J. and Graba M. (2006): Algorithm for determination of, […] functions in Hutchinson-Rice-Rosengren solution and its 3d generalization. – Journal of Theoretical and Applied Mechanics, vol.44, No.1, pp.19-30.
  • [4] Graba M. (2008): The influence of material properties on the Q-stress value near the crack tip for elastic-plastic materials. – Journal of Theoretical and Applied Mechanics, vol.46, No.2, pp.269-290.
  • [5] Graba M. (2012): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension. – J. Theor. Appl. Mech., vol.50, No.1, pp.23-46.
  • [6] Graba M. (2011): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for single edge notch plate in tension. – Archives of Civil and Mechanical Engineering, vol.11, No.2, pp.301-319.
  • [7] O’Dowd N.P., Shih C.F. (1991): Family of crack-tip fields characterized by a triaxiality parameter - I. Structure of fields. – J. Mech. Phys. Solids, vol.39, No.8, pp.989-1015.
  • [8] O’Dowd N.P., Shih C.F. (1992): Family of crack-tip fields characterized by a triaxiality parameter - II. Fracture applications. – J. Mech. Phys. Solids, vol.40, No.5, pp.939-963.
  • [9] SINTAP Procedure: Structural Integrity Assessment Procedures for European Industry. Final Procedure, Brite-Euram Project No BE95-1426. – Rotherham: British Steel, 1999.
  • [10] Kocak M., Webster S., Janosch J.J., Ainsworth R.A. and Koers R. (2006): FITNET Report, (European Fitness-forservice Network), Contract No. G1RT-CT-2001-05071.
  • [11] O’Dowd N.P. (1995): Applications of two parameter approaches in elastic-plastic fracture mechanics. – Engineering Fracture Mechanics, vol.52, No.3, pp.445-465.
  • [12] Ritchie R.O., Knott J.F. and Rice J.R. (1973): On the relationship between critical tensile stress and fracture toughness in mild steel. – Journal of the Mechanics and Physics of Solids, vol.21, pp.395-410.
  • [13] Neimitz A., Graba M. and Gałkiewicz J. (2006): New formulation of the Ritchie, Knot and Rice hypothesis. – Proceedings of XVI ECF; Alexandrea - Greece, article in electronic version.
  • [14] Neimitz A., Graba M. and Gałkiewicz J. (2007): An alternative formulation of the Ritchie-Knott-Rice local fracture criterion. – Engineering Fracture Mechanics, vol.74, pp.1308-1322.
  • [15] Graba M. (2009): Numerical Analysis of the Mechanical Fields Near the Crack Tip in the Elastic-Plastic Materials. 3D Problems. – PhD dissertation, Kielce University of Technology - Faculty of Mechatronics and Machine Building, 387 pages, Kielce 2009 (in Polish).
  • [16] Graba M. (2013): Catalogue of maximum opening crack stress for CCT specimen assuming large strain condition. – Central European Journal of Engineering, SPRINGER, DOI: 10.2478/s13531-012-0063-8, 2013.
  • [17] Graba M. (2012): Catalogue of the numerical solutions for SEN(B) specimen assuming the large strain formulation and plane strain condition. – Archives of Civil and Mechanical Engineering, Published by Elsevier, vol.12, No.1, pp.29-40.
  • [18] Graba M. and Gałkiewicz J. (2007): Influence of the crack tip model on results of the finite elements method. – Journal of Theoretical And Applied Mechanics, (ISI Master List), vol.45, No.2, pp.225-237, Warsaw 2007.
  • [19] Kumar V., German M.D. and Shih C.F. (1981): An engineering approach for elastic-plastic fracture analysis. – Electric Power Research Institute, Inc. Palo Alto, CA (1981), EPRI Report NP-1931.
  • [20] Graba M. (2012): Verification of the hybrid solution to determining the J-integral using EPRI procedures. – Proceeding of XXIV Symposium on the Fatigue and Fracture Mechanics, Bydgoszcz - Pieczyska, in Polish, article in an electronic form.
  • [21] Chauhan S., Chattopadhyay J. and Dutta B.K. (2016): Limit load equations for miniature single edge notched tensile specimens. – Transactions of the Indian Institute of Metals, vol.69, No.2, pp.641-646.
  • [22] ADINA 8.8, ADINA: User Interface Command Reference Manual – Volume I: ADINA Solids & Structures Model Definition, Report ARD 11-2, ADINA R&D, Inc., 2011.
  • [23] ADINA 8.8, ADINA: Theory and Modeling Guide – Volume I: ADINA Solids & Structures, Report ARD 11-8, ADINA R&D, Inc., 2011.
  • [24] Neimitz A., Dzioba I., Gałkiewicz J. and Molasy R. (2004): A study of stable crack growth using experimental methods, finite elements and fractography. – Engineering Fracture Mechanics, vol.71, pp.1325–1355.
  • [25] Brocks W., Cornec A. and Scheider I. (2003): Computational aspects of nonlinear fracture mechanics. – Bruchmechanik, GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier pp.127-209.
  • [26] Brocks W. and Scheider I. (2003): Reliable J-values. Numerical aspects of the path-dependence of the J-integral In incremental plasticity. – Bruchmechanik, GKSS-Forschungszentrum, Geesthacht, Germany, Elsevier pp.127-209.
  • [27] Shih C.F. (1981): Relationship between the J-integral and the crack opening displacement for stationary and extending cracks. – Journal of the Mechanics and Physics of Solids, vol.29, pp.305-329.
  • [28] Chao Y.J., Zhu X.K., Kim Y., Lar P.S., Pechersky M.J. and Morgan M.J. (2004): Characterization of crack-tip field and constraint for bending specimens under large-scale yielding. – International Journal of Fracture, vol.127, pp.283-302.
  • [29] TableCurve 3D version 4.0.0, 1993-2002.
  • [30] Neimitz A., Dzioba I., Graba M. and Okrajni J. (2008): The assessment of the strength and safety of operation of high temperature components containing crack. – Kielce University of Technology Publishing House, Kielce.
  • [31] Graba M.: Proposal of the hybrid solution to determining the selected fracture parameters for SEN(B) specimens dominated by plane strain. - Bulletin of the Polish Academy of Sciences - Technical Sciences, accepted for print in 2017.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0fb7bfb-4291-496b-9a23-90b86eb12708
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.