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Model of induction shrink fit between disk and shaft
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A complete proposal of induction shrink fit between a disk and shaft is presented. The 
proposal consists of two parts. First, a suitable interference between both parts has to be 
suggested that is be able to transfer the required mechanical torque at a permissible 
mechanical stress. Then, the process of induction heating of the disk before its putting on 
the shaft is mapped. The model of the process respecting all nonlinearities is solved 
numerically in the hard-coupled formulation. The methodology is illustrated with the 
example of induction shrink fit between the active wheel of gas turbine and shaft.
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1. Introduction

Shrink fits between two metal parts are mostly intended for transferring of 
mechanical forces and torques. From the physical viewpoint, they are based on 
high elastic stress acting at their contact place. These fits are widely used in 
numerous industrial and transport applications. Mentioned can be, for example, 
armature bandages o f rotating machines, tires o f railway wheels, shrunk-on rings, 
crankshafts, etc. [1-2]. The process o f manufacturing shrink fit by induction 
heating is shown in Fig. 1.

before heating after cooling unit

Fig. 1. Realization of induction shrink fit
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The shaft o f external radius rA2 is manufactured with the interference ArAB 
with respect to the internal radius rB1 o f the disk. After heating, the radius o f the 
disk bore must reach a value rB1 > rA2 (along the full length o f the bore). Putting it 
on the shaft and cooling, the disk shrinks, which leads to decrease o f both radii rA2 
and rB1 to a common radius rc that satisfies inequality rB1 < rC < rA2 (in our 
considerations even the shaft is supposed to be elastic). Shrinking o f both parts 
produces (at the place o f their contact) a unit force ± f r 0 (index 0 means “at rest”) 
between them (see Fig. 1), which allows transferring the mechanical torque.

2. Description of technical problem

Suppose that both disk and shaft are made of the same material. The fit must be 
able to transfer a prescribed mechanical torque M n max at the known nominal 
revolutions n0 . The task is to propose the principal parameters of the fit and check 
them with respect to all operational viewpoints. The complete model of the problem 
consists of the following sub-models:
-  Starting from the geometry of the disk and given torque M n̂ max, first it is 

necessary to find an appropriate interference ArAB . The simplest way is to find the 
dependence M n max (ArAB) ( M n max being the maximum transferable torque for 
the given interference ArAB and revolutions n ranging from 0 to n0 ) and then to 
estimate the value ArAB from this curve.

-  Check of the mechanical stress in the disk after its pressing on the shaft, which 
starts from knowledge of the unit force ± f rn acting along their mutual contact for 
the whole range of possible revolutions n e (  0, n0). This value then serves for 
computing the reduced stress <rred that is then compared with the yield stress <ry of 
the steel used (there must hold <rred < <ry).

-  Mapping of the process of induction heating of the disk. Its purpose is to find the 
parameters of the field current in the inductors (amplitude and frequency) that 
would secure that the internal radius of the disk reaches a value rB1 in a reasonable 
time, still acceptable temperature and a good efficiency.

3. Continuous mathematical model

The mathematical model o f the task consists o f two independent sub-models. 
The first o f them is purely mechanical and its goal is to find the unit contact force 
± f rn acting along the contact place after pressing for the considered range of
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revolutions n e ( 0,n0) , corresponding to maximum transferable torques M nmax, 

and reduced stress <rr e d . I f  these results are acceptable, another sub-model for the 
description o f the process o f induction heating is applied.

As the arrangement o f the system is practically axi-symmetric, the task can be 
formulated in the co-ordinates r  and z  . The first mechanical sub-model is given 
by the isothermic Lamé equation in the form [3]

(<P + Y ) - grad (div u ) + ^ -Au + f L = 0,

P  = (1 + v ) ( l - 2 v ] , ¥ ~ 2 -(1 + v) . (1)
Here, E  denotes the Young modulus o f elasticity, v  is the Poisson coefficient of 
the contraction, symbol u = (ur , uz ) represents the vector of the displacements, and

f L =  ( f L,r , f L z  ) stands for the vector o f the volumetric forces. While f L z  =  0, the 

component f L r is given by the formula for the specific centrifugal force

f L,r = P r ° ? , (° = 2nn / 60, (2)
where p  denotes the specific mass o f material o f the disk.

As the unit contact force f rn is not known beforehand, the task must be solved 
iteratively. After finishing this iterative process, we can easily find the maximum 
transferable torque M n max and also the reduced stress (in our case von Mises stress 
a'rednMi). The relation for the torque M n max reads

M n max = 2nrC h \f rn\ f f , rC = rB1 + ^ rB1, (3)
where h denotes the length o f the bore o f the disk (Fig. 1), rC stands for the final 
common radius of the shaft and disk, and ff is the coefficient of dry friction steel
-  steel. The von Mises reduced stress o ,red nMi is given by the formula

, = I1red,nMi (4), 2 L( r  - &z ) + ° r  + ° z

where <Jr and <Jz denote the radial and axial stresses at a point, respectively.
The second sub-model describing the process o f induction heating consists of 

three partial differential equations describing the distribution of the magnetic field, 
temperature field an field o f thermoelastic displacements.

Magnetic field in the system is described by the solution o f a well-known 
parabolic equation for magnetic vector potential A  in the form [4]

curl
dA

-curl A ̂ ,
where fi denotes the magnetic permeability, Y stands for the electric conductivity

(5)
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and J ext is the vector o f the external harmonic current density in the field coils.
But solution to (5) is, in this particular case, practically unfeasible. The reason 

consists in the deep disproportion between the frequency f  (usually tens or
hundreds Hz) o f the field current I ext and time of heating tH (several minutes). 
That is why the model was somewhat simplified using the assumption that the 
magnetic field is harmonic. In such a case it can be described by the Helmholtz 
equation for the phasor A  o f the magnetic vector potential A  [4]

curl (curlA) + j • coyuA = f  J ext. (6)
Here, o  denotes the angular frequency ( o  = I n f  ). But the magnetic 

permeability o f ferromagnetic parts is not supposed to be a constant; its value is 
always assigned to the local value o f magnetic flux density B  . It computation is, in 
such a case, based on an appropriate iterative procedure.

The temperature field is described by the heat transfer equation [5]

div ( •  gradT ) = pcp -  P , (7)

where A is the thermal conductivity, p  denotes the mass density and cp stands

for the specific heat (all o f these parameters are generally temperature-dependent 
functions). Finally, symbol p  denotes the time average internal volumetric sources 
o f heat that generally consist o f the volumetric Joule and magnetization losses.

Finally, the solution o f the thermoelastic problem is solved by means o f the 
Lamé non-isothermic equation in the form [3]

[<p+Y=^ grad (div u) + ^ A u - ( 3 p  + 2 ^ = a T • grad T = 0, (8) 

where a T is the coefficient o f the linear thermal dilatability o f material. Other 
parameters are identical with those in (1).

It is important to notice that practically all physical parameters of material of 
the disk ( f , y, A, pcp, a T ) are generally temperature-dependent functions. That is

why the problem characterized by the interaction o f the above three fields cannot 
be solved in the weak formulation. On the other hand, when the temperature o f the 
disk does not exceed about 350 ° C, the magnetic permeability o f steel can be 
considered independent o f temperature.

4. Numerical solution

The numerical processing o f the problem was realized by codes QuickField 
(mechanical sub-model) and COMSOL Multiphysics (mapping o f induction 
heating). The available algorithms were supplemented with a number o f own 
procedures and scripts and some results were verified by computation using our 
own code Agros2d based on the fully adaptive higher-order finite element method.
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Attention was particularly paid to the convergence of results in the dependence on 
the density of discretization mesh and distance of the artificial boundary (in case of 
magnetic field), because the results were required to reach 2-3 valid digits.

The mechanical sub-model was solved by the finite element method using the linear 
elements for the whole range of revolutions. Reaching the above accuracy required a 
relatively uniform mesh with about 90.000 elements and the system of equations was 
characterized by a similar number of the degrees of freedom (DOFs).

The problem of induction heating was also solved by the finite element method 
in the monolithic formulation (with one stiffness matrix), using the quadratic 
elements for all discretization meshes. The numbers of elements were about
100.000 for magnetic field and about 40.000 for temperature field and field of 
thermoelastic displacements. The total number of DOFs was about 500.000.

The complete solution of one variant usually took more than 5 hours on a top- 
level PC.

5. Illustrative example

The solved arrangement is depicted in Fig. 2 (dimensions given in mm). Both 
parts (disk and shaft) are manufactured of steel AISI 4130. The interference was 
chosen (after preliminary computations) ArAB = 0.2 mm.
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Fig. 2. Basic arrangement of investigated system (dimensions given in mm)

The physical parameters of steel AISI 4130 are known [6]. Some of them
( Y, X, p ,  cp, a T) are temperature-dependent functions, see, for example Figs. 3-5.

11 2Other parameters are supposed constant ( E = 2.1 x 10“ N/m2, v = 0.3). The yield 
stress of steel AISI 4130 <7y = 4.226 x 108N m 2 and the coefficient of dry friction 
steel-steel f f = 0.55 .
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O

T (°C)

Fig. 3. Steel AISI 4130: electrical conductivity versus temperature

T (°C)

Fig. 4. Steel AISI 4130: thermal conductivity versus temperature

B (T)
Fig. 5. Steel AISI 4130: relative permeability versus magnetic flux density

The nominal revolutions o f the system are n0 = 3000 rpm and power to be 
transferred P = 1MW, i.e., the mechanical torque M  = 3184Nm.

The most important result o f the first sub-model is the distribution o f the 
reduced von Mises stress <xredMi in the disk both at rest and at the nominal
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revolutions n0 = 3000 rpm. This stress must not exceed the yield stress <Ty . Fig. 6 

shows the distributions of <xredMi along the transversal axis (see Fig. 2) o f the disk.

It is obvious that the highest von Misses stress in the disk occurs (in both 
regimes) at its internal radius. But as its value is about 3.885x108 Nm-2, the fit can 
be still considered safe. Its higher values for n0 = 3000 rpm are brought about by 
the stresses produced by the centrifugal forces.

During the process of induction heating the disk is fixed on a ceramic ''shaft'' 
and heated by two plate-type inductors (see Fig. 6). In order to prevent excessive 
cooling, the disk is wrapped in a good thermal insulation (glass wool).
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Fig. 6. Distribution of von Mises stress <Jred Mi along the transversal axis 

of the disk a) after pressing on shaft at rest ( n = 0 ) and b) during operation ( n0 = 3000 rpm). 

The force effect of rotating blades is quantified by an additional force f r b2 = 8.814X107 Nm-2
blade locks
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Both inductors with 27 spiral turns made o f massive hollow copper conductors 
cooled by flowing water carry harmonic currents o f the same phase shift, thus 
producing transversal magnetic field in the system. The thermal insulation is placed 
also in the area o f the blade locks. The process o f heating is then almost adiabatic, 
exhibiting a very favorable efficiency.

The field current parameters were selected in accordance with the possibilities 
o f common industrial plants. While its frequency was set f  = 50 Hz, its amplitude 
ranged from 1-4 kA (such currents are commonly available). The thermal 
conductivity o f high-quality thermal insulation -  glass wool -  is 0.04 Wm-1K-1 and 
its specific heat is 0.04824 x106Jm-3K-1. The average temperature o f the cooling 
water in the hollow conductors o f the inductor Tw = 50 ° C and the initial 
temperature o f the system (including ambient air) before heating T0 = 30 °C.

Due to poor thermal conductivity o f glass wool the boundary conditions along 
the area containing the disk and inductors placed in thermal insulation are restricted 
just on convection (coefficient a  = 20 Wm-2K-1).

The most important results are depicted in Figs. 8 and 9. Figure 8 contains the 
evolution o f the average temperatures of the disk in time for different RMS values 
o f the field current ranging from 1 kA to 5 kA.
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Fig. 8. Time evolution of average temperature of disk for different RMS values of field current

In order to reach the displacement equal to ArAB = 0.2 mm as required in time 
shorter than 180 s we have to use field currents I  o f RMS value 4 or 5 kA. In the 
first case, this displacement in the axis is reached in about 253 s, in the second case
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in 190 s. But such displacements must appear along the whole length o f the bore. 
The corresponding time evolutions are (for current I  = 4 kA) depicted in Fig. 9.

Now it is clear that for the field current I = 4 kA the displacement u exceeding 
the prescribed interference ArAB = 0.2 mm along the whole length o f the bore is 
reached in about 270 s.
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Fig. 9. Time evolution of displacements along the bore of the disk for field current I = 4 kA

6. Conclusion

The paper deals with the proposal o f an axisymmetric shrink fit. First, a 
complete continuous mathematical model o f the problem is suggested. This model 
is then solved numerically in two steps: the first one being aimed at mechanical 
properties o f the fit while the second one at mapping o f the process o f induction 
heating. The results obtained are physically real and well correspond with the 
common industrial experience. Nevertheless, we plan (in collaboration with some 
industrial plant because the realization is beyond the possibilities o f academic 
workshops) their experimental verification.

Nevertheless, even when the methodology is obviously correct and applicable 
for practice, further research should be aimed at the simplification o f its realization. 
Still, the authors had to combine two-three various codes supplemented with own 
procedures and scripts. The processing o f one variant takes a long time (on a top- 
level PC it is usually more than 5-6 hours); that is why the acceleration o f the 
algorithms is a must. More attention should also be paid to the accuracy o f the 
input data (temperature dependencies o f physical parameters o f various materials) 
because they often exhibit substantial variances pending on their sources 
(databases, datasheets etc.).

Another direction o f research is optimization o f the process o f heating the disk 
that is characterized by more degrees o f freedom. For example, if  the profile o f the 
disk is geometrically nonuniform, uniformly wound inductors do not seem to be 
the best solution. In order to reach a homogeneous temperature profile in it, the
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internal turns o f the inductors should be wound densely only near the bore. With 
growing diameter, the distance between particular turns could also grow. Another 
version is heating o f the disk by the complete inductors, but after reaching some 
prescribed temperature their external parts could be switched off in order to prevent 
the narrower upper parts o f the disk from overheating.
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