Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bioethanol wastewater contains complex inorganic and organic ions, posing a severe environmental problem. In this research, the removal of nitrate ion (NO3) from bioethanol wastewater was conducted using ammonium polymers as adsorbents. Ammonium polymer was synthesized using the one-pot approach method using functional monomer with single thermal. This study aimed to analyze the performance of an ammonium polymer for removing nitrate ions (NO3-) from bioethanol waste, considering operational parameters (polymer mass, temperature, and contact time) by advanced characterization technique and determine the isotherm model for predicting adsorption behavior. The results of FTIR revealed significant functional groups, including N-H and C-N. SEM-EDX confirmed the effectiveness of adsorption by identifying each component, and elemental analysis confirmed the percentages of C, H, and N in the adsorbent. The optimal conditions for the adsorption process were achieved when 0.1 g of ammonium polymer was in contact with bioethanol wastewater for 60 minutes at 40 °C with a removal efficiency of 96.32% and an adsorption capacity of 0.58 mg/g. The adsorption isotherm analysis followed the Temkin model.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
54--69
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan,Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
autor
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan,Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Japan
autor
- Research Center for Chemistry, National Research and Innovation Agency B.J. Habibie Science and Techno Park, Serpong, South Tangerang, Banten, 15314, Indonesia
autor
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan,Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan,Tamanan, Bantul, D.I. Yogyakarta, 55191, Indonesia
autor
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Japan
autor
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Japan
Bibliografia
- 1. Aini, N., Mufandi, I., Jamilatun, S., Rahayu, A. (2023). Exploring cacao husk waste – surface modification, characterization, and its potential for removing phosphate and nitrate ions. Journal of Ecological Engineering, 24(12), 282–292. https://doi.org/10.12911/22998993/174003
- 2. Al-Ghouti, M. A., Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393(January), 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
- 3. Amiri, M. J., Raayatpisheh, M., Radi, M., Amiri, S. (2023). Preparation and characterization of biopolymer-based adsorbents and their application for methylene blue removal from wastewater. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-44613-6
- 4. Ayawei, N., Ebelegi, A. N., Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017, 3039817. https://doi.org/10.1155/2017/3039817
- 5. Balci, B., Keskinkan, O., Avci, M. (2011). Use of BDST and an ANN model for prediction of dye adsorption efficiency of Eucalyptus camaldulensis barks in fixed-bed system. Expert Systems with Applications, 38(1), 949–956. https://doi.org/10.1016/j.eswa.2010.07.084
- 6. Bellahsen, N., Kertész, S., Pásztory, Z., Hodúr, C. (2018). Adsorption of nutrients using low-cost adsorbents from agricultural waste and by-products – Review. Progress in Agricultural Engineering Sciences, 14(1), 1–30. https://doi.org/10.1556/446.14.2018.1.1
- 7. Bhatt, P., Kumar, V., Subramaniyan, V., Nagarajan, K., Sekar, M., Chinni, S. V., Ramachawolran, G. (2023). Plasma modification techniques for natural polymer-based drug delivery systems. Pharmaceutics, 15(8), 1–26. https://doi.org/10.3390/ pharmaceutics15082066
- 8. Bušić, A., Mardetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M. I., Komes, D., Novak, S., Šantek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology, 56(3), 289–311. https://doi.org/10.17113/ ftb.56.03.18.5546
- 9. Chouchane, T., Khireddine, O., Boukari, A. (2021). Kinetic studies of Ni(II) ions adsorption from aqueous solutions using the blast furnace slag (BF slag). Journal of Engineering and Applied Science, 68(1), 1–18. https://doi.org/10.1186/s44147-021-00039-3
- 10. Chowdhary, P., Raj, A., Bharagava, R. N. (2018). Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. Chemosphere, 194, 229–246. https://doi.org/10.1016/j. chemosphere.2017.11.163
- 11. Cwynar, P., Pasikowski, P., Szweda, R. (2022). One-pot approach for multi-step, iterative synthesis of sequence-defined oligocarbamates. European Polymer Journal, 182, 111706. https://doi.org/10.1016/j. eurpolymj.2022.111706
- 12. Duan, Y., Duan, L., Li, C., Sun, Z., Fu, Z., Fan, J., Liang, S., Xie, X. (2023). Polymer blend particles with dual-phase morphology prepared using a novel one-pot method via a phase inversion emulsion procedure. Materials Letters, 347, 134667. https://doi.org/10.1016/j.matlet.2023.134667
- 13. Georgiou, R. P., Tsiakiri, E. P., Lazaridis, N. K., Pantazaki, A. A. (2016). Decolorization of melanoidins from simulated and industrial molasses effluents by immobilized laccase. Journal of Environmental Chemical Engineering, 4(1), 1322–1331. https://doi.org/10.1016/j.jece.2016.01.035
- 14. Ghanbarizadeh, P., Parivazh, M. M., Abbasi, M., Osfouri, S., Dianat, M. J., Rostami, A., Dibaj, M., Akrami, M. (2022). Performance enhancement of specific adsorbents for hardness reduction of drinking water and groundwater. Water (Switzerland), 14(17). https://doi.org/10.3390/w14172749
- 15. Gizaw, A., Zewge, F., Kumar, A., Mekonnen, A., Tesfaye, M. (2021). A comprehensive review on nitrate and phosphate removal and recovery from aqueous solutions by adsorption. Aqua Water Infrastructure, Ecosystems and Society, 70(7), 921–947. https://doi.org/10.2166/aqua.2021.146
- 16. Gorzin, F., Bahri Rasht Abadi, M. M. (2018). Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science and Technology, 36(1–2), 149–169. https://doi.org/10.1177/0263617416686976
- 17. Hakika, D. C., Sarto, S., Mindaryani, A., Hidayat, M. (2019). Decreasing COD in sugarcane vinasse using the fenton reaction: The effect of processing parameters. Catalysts, 9(11). https://doi.org/10.3390/ catal9110881
- 18. Hakika, D. C., Sarto, S., Mindaryani, A., Hidayat, M., Mufrodi, Z. (2022). Detoxification of distillery wastewater by AOP fenton for the enhancement of biogas production. Jurnal Bahan Alam Terbarukan, 11(1), 01–07. https://doi.org/10.15294/jbat. v11i1.35844
- 19. Haktaniyan, M., Sharma, R., Bradley, M. (2023). Size-controlled ammonium-based homopolymers as broad-spectrum antibacterials. Antibiotics, 12(8). https://doi.org/10.3390/antibiotics12081320
- 20. Hossain, M. B., Sultana, J., Jolly, Y. N., Nur, A. A. U., Sultana, S., Miazee, R., Islam, M. S., Paray, B. A., Arai, T., Yu, J. (2023). Seasonal variation, contamination and ecological risk assessment of heavy metals in sediments of coastal wetlands along the Bay of Bengal. Marine Pollution Bulletin, 194(PB), 115337. https://doi.org/10.1016/j. marpolbul.2023.115337
- 21. Inyinbor, A. A., Adekola, F. A., Olatunji, G. A. (2016). Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry, 15, 14–27. https://doi.org/ https://doi.org/10.1016/j.wri.2016.06.001
- 22. Jiang, Q., Horozov, T., Bismarck, A. (2022). One-pot approach to fabrication of porous polymers from Pickering emulsion templates. Polymer, 261(September), 125406. https://doi.org/10.1016/j. polymer.2022.125406
- 23. Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., Patil, S. (2021). Surfactant adsorption isotherms: A review. ACS Omega, 6(48), 32342–32348. https://doi.org/10.1021/acsomega.1c04661
- 24. Li, J., Dong, X., Liu, X., Xu, X., Duan, W., Park, J., Gao, L., Lu, Y. (2022). Comparative study on the adsorption characteristics of heavy metal ions by activated carbon and selected natural adsorbents. Sustainability, 14(23). https://doi.org/10.3390/su142315579
- 25. Li, J., Jin, Q., Liang, Y., Geng, J., Xia, J., Chen, H., Yun, M. (2022). Highly efficient removal of nitrate and phosphate to control eutrophication by the dielectrophoresis-assisted adsorption method. International Journal of Environmental Research and Public Health, 19(3). https://doi.org/10.3390/ijerph19031890
- 26. Lin, W., Murphy, C. J. (2017). A Demonstration of le Chatelier’s Principle on the Nanoscale. ACS Central Science, 3(10), 1096–1102. https://doi.org/10.1021/acscentsci.7b00302
- 27. Mahmoodi, N. M., Arami, M. (2008). Modeling and sensitivity analysis of dyes adsorption onto natural adsorbent from colored textile wastewater. Journal of Applied Polymer Science, 109(6), 4043–4048. https://doi.org/https://doi.org/10.1002/app.28547
- 28. Mokari, A., Guo, S., Bocklitz, T. (2023). Exploring the steps of infrared (IR) spectral analysis: pre-processing, (classical) data modelling, and deep learning. Molecules, 28(19), 1–21. https://doi.org/10.3390/molecules28196886
- 29. Moravcová, D., Jandera, P., Planeta, J. (2003). Characterization of polymer monolithic stationary phases for capillary HPLC. Journal of Separation Science, 26(11), 1005–1016. https://doi.org/10.1002/jssc.200301498
- 30. Nandiyanto, A. B. D., Ragadhita, R., Fiandini, M. 2023. Interpretation of fourier transform infrared spectra (FTIR): A practical approach in the polymer/ plastic thermal decomposition. Indonesian Journal of Science and Technology, 8(1), 113–126. https://doi.org/10.17509/ijost.v8i1.53297
- 31. Perwitasari, D. S., Ardian, Y., Pracesa, Y., Pangestu, M. A., Sampe Tola, P. (2021). Langmuir and freundlich isotherm approximation on adsorption mechanism of chrome waste by using tofu dregs. NST Proceedings, 2021(Iii), 106–112. http://dx.doi.org/10.11594/nstp.2021.1417
- 32. Qu, W., Suo, L., Liu, R., Liu, M., Zhao, Y., Xia, L., Fan, Y., Zhang, Q., Gao, Z. (2022). Influence of temperature on denitrification and microbial community structure and diversity: A laboratory study on nitrate removal from groundwater. Water (Switzerland), 14(3), 1–15. https://doi.org/10.3390/ w14030436
- 33. Rahayu, A., Alfi, N., Amrillah, Z., Jamilatun, S. (2023). Removal of ion nitrate and phosphate using cocoa shell skin modified with functional polymer. Elkawnie 9(2), 308–323. https://doi.org/10.22373/ ekw.v9i2.18260
- 34. Rahayu, A., Hakika, D. C., Alfi, N., Amrillah, Z., Veranica, V. (2023). Synthesis and characterization of ammonium polymer for anion removal in aqueous solutions. Polimery, 68(10), 537–543.
- 35. Rahayu, A., Hakika, D. C., Amrillah, N. A. Z., Veranica, V. 2023. Synthesis and characterization of ammonium polymer for anion removal in aqueous solutions. Polimery/Polymers, 68(10), 537–543. https://doi.org/10.14314/polimery.2023.10.3
- 36. Rahayu, A., Jamilatun, S., Fajri, J.A., Lim, L.W. (2021). Characterization of organic polymer monolith columns containing ammonium quarternary as initial study for capillary chromatography. Elkawnie, 7(1), 119. https://doi.org/10.22373/ekw.v7i1.8764
- 37. Rahayu, A., Lim, L. W., Takeuchi, T. (2015). Polymer monolithic methacrylate base modified with tosylated-polyethylene glycol monomethyl ether as a stationary phase for capillary liquid chromatography. Talanta, 134, 232–238. https://doi.org/10.1016/j.talanta.2014.10.060
- 38. Rodríguez-Félix, E., Contreras-Ramos, S. M., Davila-Vazquez, G., Rodríguez-Campos, J., Marino- Marmolejo, E. N. (2018). Identification and quantification of volatile compounds found in vinasses from two different processes of Tequila production. Energies, 11(3), 12–15. https://doi.org/10.3390/en11030490
- 39. Roopnarine, B. K., Schmidt, S. C., Maxwell, K. J., Morozova, S. (2023). Effects of molecular weight and surface interactions on polymer diffusion in confinement. ACS Macro Letters, 12(2), 221–226. https://doi.org/10.1021/acsmacrolett.3c00015
- 40. Shojaeipoor, F., Elhamifar, D., Moshkelgosha, R. (2016). Removal of Pb(II) and Co(II) ions from aqueous solution and industrial wastewater using ILNO-NH2: Kinetic, isotherm and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 67. https://doi.org/10.1016/j.jtice.2016.07.008
- 41. Simone, P., Pierri, G., Capitani, D., Ciogli, A., Angelini, G., Ursini, O., Gentile, G., Cavazzini, A., Villani, C., Gasparrini, F. (2017). Capillary methacrylate-based monoliths by grafting from/to γ-ray polymerization on a tentacle-type reactive surface for the liquid chromatographic separations of small molecules and intact proteins. In Journal of Chromatography A (Vol. 1498). Elsevier B.V. https://doi.org/10.1016/j.chroma.2016.11.039
- 42. Vievard, J., Alem, A., Pantet, A., Ahfir, N. D., Arellano-Sánchez, M. G., Devouge-Boyer, C., Mignot, M. (2023). Bio-based adsorption as ecofriendly method for wastewater decontamination: A Review. Toxics, 11(5). https://doi.org/10.3390/toxics11050404
- 43. Wang, J., Amano, Y., Machida, M. (2024). Nitrate removal from aqueous solution by glucose-based carbonaceous adsorbent: Batch and fixed-bed column adsorption studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 686, 133296. https://doi.org/https://doi.org/10.1016/j.colsurfa.2024.133296
- 44. Wang, W., Yuan, Y., Shi, F., Li, Q., Zhao, S., Wang, J., Sheng, M., Wang, Z. (2023). Enhancing dispersibility of nanofiller via polymer-modification for preparation of mixed matrix membrane with high CO2 separation performance. Journal of Membrane Science, 683, 121791. https://doi.org/10.1016/j.memsci.2023.121791
- 45. Wang, Z., Giammar, D. E. (2013). Mass action expressions for bidentate adsorption in surface complexation modeling: Theory and Practice. Environmental Science & Technology, 47(9), 3982–3996. https://doi.org/10.1021/es305180e
- 46. Zein, R., Deswati, D., Fauzia, S., Pisya, N. F. (2024). Comparative study of Pb(II) and Cr(VI) removal using Cassava peel (Manihot Esculenta Crantz). International Journal of Phytoremediation, 0(0), 1–10. https://doi.org/10.1080/15226514.2024.2372851
- 47. Zhang, H., Yang, Z., Tian, J., Liu, C., Qin, Z. (2024). Enhanced nitrate nitrogen removal from wastewater using modified reed straw: Adsorption Performance and Resource Utilization. Sustainability (Switzerland), 16(10). https://doi.org/10.3390/su16104001
- 48. Zhong, Y., Zhou, W., Zhang, P., Zhu, Y. (2010). Preparation, characterization, and analytical applications of a novel polymer stationary phase with embedded or grafted carbon fibers. Talanta, 82(4), 1439–1447. https://doi.org/10.1016/j.talanta.2010.07.019
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0f6cc8e-c251-4d8a-b8d7-a42ad6062ebb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.