Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper aims at the higher reactive power management complexity caused by the access of distributed power, and the problem such as large data exchange capacity, low accuracy of reactive power distribution, a slow convergence rate, and so on, may appear when the controlled objects are large. This paper proposes a reactive power and voltage control management strategy based on virtual reactance cloud control. The coupling between active power and reactive power in the system is effectively eliminated through the virtual reactance. At the same time, huge amounts of data are treated to parallel processing by using the cloud computing model parallel distributed processing, realize the uncertainty transformation between qualitative concept and quantitative value. The power distribution matrix is formed according to graph theory, and the accurate allocation of reactive power is realized by applying the cloud control model. Finally, the validity and rationality of this method are verified by testing a practical node system through simulation.
Czasopismo
Rocznik
Tom
Strony
921--936
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wz.
Twórcy
autor
- Key Laboratory of Smart Grid of Ministry of Education, Tianjin University China
autor
- Key Laboratory of Smart Grid of Ministry of Education, Tianjin University China
Bibliografia
- [1] Ramin Moslemi, Javad Mohammadpour, Accurate reactive power control of autonomous microgrids using an adaptive virtual inductance loop, Electric Power Systems Research, vol. 129, no. 8, pp. 142–149 (2015).
- [2] Tang H.L., Wu J.K., Multi-objective coordination optimisation method for DGs and EVs in distribution networks, Archives of Electrical Engineering, vol. 68, no. 1, pp. 15–32 (2019).
- [3] Harinder P.S., Brar Y.S., Kothari D.P., Reactive power based fair calculation approach for multiobjective load dispatch problem, Archives of Electrical Engineering, vol. 68, no. 4, pp. 719–735 (2019).
- [4] Abdelhakim Saim, Rabah Mellah, Azeddine Houari, Mohamed Machmoum, Djerioui Ali, Adaptive resonant based multi-loop control strategy for parallel distributed generation units in standalone microgrid application, Electric Power Systems Research, vol. 143, no. 10, pp. 262–271 (2017).
- [5] Mahmood H., Michaelson D., Jiang J., Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances, IEEE Transactions on Power Electronics, vol. 1, pp. 99 (2014).
- [6] Sun Q., Han R., Zhang H., Zhou J., Guerrero J.M., A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet, IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 3006–3019 (2015).
- [7] Tahir M., Mazumder S.K., Self-Triggered communication enabled control of distributed generation in microgrids, IEEE Transactions on Industrial Informatics, vol. 11, no. 2, pp. 441–449 (2015).
- [8] Simpson-Porco J.W., Shafiee Q., Dorfler F., Vasquez J.C., Guerrero J.M., Bullo F., Secondary frequency and voltage control of islanded microgrids via distributed averaging, IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7025–7038 (2015).
- [9] Guo F., Wen C., Mao J., Chen J., Song Y.D., Distributed cooperative secondary control for voltage unbalance compensation in an islanded microgrid, IEEE Transactions on Industrial Informatics, vol. 11, no. 5, pp. 1078–1088 (2015).
- [10] Mahmood H., Michaelson D., Jiang J., Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances, IEEE Transactions on Power Electronics, vol. 1, p. 99 (2014).
- [11] Savaghebi M., Jalilian A., Vasquez J.C., Guerrero J.M., Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid, IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1390–1402 (2013).
- [12] He J., Li Y.W., Guerrero J.M. et al., An islanding microgrid power sharing approach using enhanced virtual impedance control scheme, IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5272–5282 (2013).
- [13] Han H., Liu Y., Sun Y. et al., An improved droop control strategy for reactive power sharing in islanded microgrid, IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3133–3141 (2015).
- [14] Nayeripour M., Hossein F.A., Eberhard W., Coordinated online voltage management of distributed generation using network partitioning, Electric Power Systems Research, vol. 141, no. 11, pp. 202–209 (2016).
- [15] Ludwig Slusky M.D., Partow-Navid P., Cloud computing and computer forensics for business applications, Journal of Technology Research, Computer science, Corpus ID: 61328373 (2009).
- [16] Rahimi M.R., Venkatasubramanian N., Mehrotra S., Vasilakos AV., MAPCloud: mobile applications on an elastic and scalable 2-tier cloud architecture, In: Utility and Cloud Computing (UCC), 2012 IEEE Fifth International Conference on Cloud Computing, pp. 83–90 (2012).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0f405ca-2307-43bd-9560-7dbdfe4b47e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.