PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interval type-2 fuzzy logic controller based DPC-SVM algorithm for PWM rectifier

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Sterownik z logiką rozmytą typu 2 interwałowy oparty na algorytmie DPC-SVM dla prostownika PWM
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose an interval type-2 fuzzy logic controller (IT-2 FLC) for Direct Power Control (DPC) of three phases Pulse Width modulation (PWM) rectifier based on virtual flux estimation. The precise mathematical model of the system is not required to design the proposed controller. The design procedure of this controller is explored in detail in this paper. To study the operation and the controllability of the proposed IT2-FLC in the DPC-SVM algorithm under different conditions, the PWM rectifier with the whole control scheme has been simulated using MATLAB SIMULINK program. The results of simulation show the excellent performances of the proposed system.
PL
W tym artykule proponujemy interwałowy kontroler logiki rozmytej typu 2 (IT-2 FLC) do bezpośredniego sterowania mocą (DPC) trójfazowego prostownika z modulacją szerokości impulsu (PWM) na podstawie estymacji strumienia wirtualnego. Procedura projektowania tego regulatora została szczegółowo omówiona w tym artykule. Aby zbadać działanie i sterowalność proponowanego IT-2-FLC w algorytmie DPC-SVM w różnych warunkach, przeprowadzono symulację prostownika PWM z całym schematem sterowania za pomocą programu MATLAB SIMULINK. Wyniki symulacji wskazują na doskonałe osiągi proponowanego systemu.
Rocznik
Strony
80--84
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • University of Medea, Algeria
  • University of Medea, Algeria
  • University of Medea, Algeria
Bibliografia
  • [1] Xu Zhang, Guojun Tan, Zhan Liu, Qiang Wang, Weifeng Zhang and Tao Xia, “Finite Control Set Model Predictive Direct Power Control of Single-phase Three-level PWM Rectifier Based on Satisfactory Optimization”, IEEE Access, pp. 220058 - 220068, January2021.
  • [2] Xiong Xiao, Yujuan Wu, Jiantao Su, Yongjun Zhang and Jingzhi Zhou, “An Improved Precise Power Control of Voltage Sensorless-MPC for PWM Rectifiers”, IEEE Access, vol. 8, pp. 220058 - 220068, December 2020.
  • [3] Hui Ma Yun Lu, Kaitong Zheng andTianchuan Xu, “Research on the Simplified SVPWM for Three-Phase/Switches Y-Type Two-Level Rectifier”, IEEE Access, vol. 8, pp. 214310 - 214321, November 2020.
  • [4] Navid H Golkhandan, FarzadTahami and Majid Reza Salehi, “A Harmonic Elimination Method For Three-Phase PWM Rectifier To Reduce Computational Complexity”, 28th Iranian Conference on Electrical Engineering (ICEE), 2020.
  • [5] Seyed Majid Hashemzadeh, Rana Rostami, VafaMarzang andSeyed Hossein Hosseini, “Direct Power Control of PWM Three-Phase Rectifier Using the Predictive Method: Aims to Reduce THD”, 28th Iranian Conference on Electrical Engineering (ICEE), 2020.
  • [6] Hasan Komurcugil and SertacBayhan, “Sliding Mode Control Strategy for Three-Phase Three-Level T-Type PWM Rectifiers with Capacitor Voltage Imbalance Compensation”, IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 2019.
  • [7] Durga Nair S., GreeshmaNadh and Arun Rahul S., “A Novel Predictive Control for an Active Front End Rectifier using Lyapunov Stability Criteria”, IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 2019.
  • [8] June-Seok Lee ; Kyo-Beum Lee, “An Open-Switch Fault Detection Method and Tolerance Controls Based on SVM in a Grid-Connected T-Type Rectifier With Unity Power Factor”, IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 7092 – 7104, 2014.
  • [9] Gao Shi-hong ; Qian Xiao-long, “Research on modelling and control of three-level PWM rectifier system”, The 26th Chinese Control and Decision Conference (2014 CCDC), pp. 3813 - 3817, 2014.
  • [10] Zhang, Y.; Qu, C., “Direct Power Control of a Pulse Width Modulation Rectifier Using Space Vector Modulation Under Unbalanced Grid Voltage”, IEEE Transactions on Power Electronics, vol. PP, no. 99, 2014.
  • [11] June-Seok Lee ; Kyo-Beum Lee, “An Open-Switch Fault Detection Method and Tolerance Controls Based on SVM in a Grid-Connected T-Type Rectifier With Unity Power Factor”, IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 7092 – 7104, 2014.
  • [12] Dos Santos, E.C. ; Rocha, N. ; Jacobina, C.B., “Suitable Single-Phase to Three-Phase AC–DC–AC Power Conversion System”, IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 860 - 870 2014.
  • [13] Xin Zhou ; Hongjun Chen ; Hao Xu ; Lin Li, “Modeling and deterministic robust control of a three-phase four-switch PWM voltage-source rectifier based on direct power control”, IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 94 - 99, 2014.
  • [14] Alves de Melo Bento, A.; Perez Vieira, P.K. ; Cabral da Silva, E.R., “Application of the One-Cycle Control Technique to a Three-Phase Three-Level NPC Rectifier”, IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1177 - 1184, 2014.
  • [15] T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, “Direct power control of PWM converter without power-source voltage sensors, ”IEEE Trans. Ind. Applicat., vol. 34, pp. 473–479, May/June 1998.
  • [16] Gerardo Escobar, Aleksandar M. Stankovic, Juan M. Carrasco, E. Galván and Romeo Ortega, “Analysis and Design of Direct Power Control (DPC) for a Three Phase Synchronous Rectifier via Output Regulation Subspaces,”IEEE Trans. Power.Electronics., vol. 18, No. 3, May 2003.
  • [17] Mariusz Malinowski, Marek Jasin´ski and Marian P. Kazmierkowski,“Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM)”, IEEE Trans. ind. Electronics, vol. 51, No. 2, April 2004.
  • [18] M. Malinowski, M. P. Kaz´mierkowski, S. Hansen, F Blaabjerg, and G.D Marques, “Virtual flux based direct power control of three-phase PWM rectifiers.” IEEE Trans. Ind. Applicat., vol. 37, pp. 1019–1027, July/Aug. 2001.
  • [19] Yildirim, M. T. A. Basturk and M. E. Yuksel, “A detail-preserving type-2 fuzzy logic filter for impulse noise removal from digital images,” Proc. IEEE FUZZ Conference, pp. 751-756, London, UK, July 2007.
  • [20] Wu, K. C., “Fuzzy Interval Control of Mobile Robots,” Computers Elect. Eng., vol. 22, pp. 211-229, 1996.
  • [21] Wu, H. and J. M. Mendel, “Classification of battlefield ground vehicles using acoustic features and fuzzy logic rule-based classifiers,” IEEE Trans. on Fuzzy Systems, vol. 15, pp. 56-72, February, 2007.
  • [22] Torres, P. and D. Sáez, “Type-2 Fuzzy Logic Identification Applied to the Modeling of a Robot Hand,” Proc. IEEE FUZZ Conference, Paper # FS0216, Hong Kong, China, June 2008.
  • [23] Karnik, N. N. and J. M. Mendel, “Type-2 Fuzzy Logic Systems: Type-Reduction,” in Proc. IEEE Conference on Systems, Man and Cybernetics, pp. 2046-2051, San Diego CA, Oct., 1998.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0f35faf-e491-4275-8e60-d6404383947e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.