Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study two ways (two levels) of finding free-probability analogues of classical infinitely divisible measures. More precisely, we identify their Voiculescu transforms on the imaginary axis. For free-selfdecomposable measures we find a formula (a differential equation) for their background driving transforms. It is different from the one known for classical selfdecomposable measures. We illustrate our methods on hyperbolic characteristic functions. Our approach may produce new formulas for definite integrals of some special functions.
Czasopismo
Rocznik
Tom
Strony
349--367
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
- Araujo and E. Giné (1980), The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York.
- O. E. Barndorff-Nielsen and S. Thorbjørnsen (2002), Self-decomposability and Lévy processes in free probability, Bernoulli 8, 323-366.
- H. Bercovici and V. Pata (1999), Stable laws and domains of attraction in free probability theory, Ann. of Math. 149, 1023-1060.
- H. Bercovici and D. V. Voiculescu (1993), Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42, 733-773.
- P. Billingsley (1986), Probability and Measure, 2nd ed., Wiley, New York.
- S. Gradshteyn and I. M. Ryzhik (1994), Table of Integrals, Series and Products, 5th ed., Academic Press, New York.
- T. Hasebe, N. Sakuma and S. Thorbjørnsen (2019), The normal distribution is freely self-decomposable, Int. Math. Res. Notices, 1758-1787.
- J. Jacod (1985), Grossissements de filtration et processus d’Ornstein-Uhlenbeck generalisé, in: Grossissements de filtrations: exemples et applications, T. Jeulin and M. Yor (eds.), Lecture Notes in Math. 1118, Springer, 37-44.
- L. Jankowski and Z. J. Jurek (2012), Remarks on restricted Nevanlinna transforms, Demonstratio Math. 45, 297-307.
- Z. J. Jurek (1996), Series of independent exponential random variables, in: Probability Theory and Mathematical Statistics (Tokyo, 1995), World Sci., 174-182.
- Z. J. Jurek (2006), Cauchy transforms of measures as some functionals of Fourier transforms, Probab. Math. Statist. 26, 187-200.
- Z. J. Jurek (2007), Random integral representations for free-infinitely divisible and tempered stable distributions, Statist. Probab. Lett. 77, 417-425.
- Z. J. Jurek (2007), On a method of introducing free-infinitely divisible probability measures, Demonstratio Math. 49, 236-251.
- Z. J. Jurek and W. Vervaat (1983), An integral representation for self-decomposable Banach space valued random variables, Z. Wahrsch. Verw. Gebiete 62, 247-262.
- Z. J. Jurek and M. Yor (2004), Selfdecomposable laws associated with hyperbolic functions, Probab. Math. Statist. 24, 181-191.
- K. R. Parthasarathy (1967), Probability Measures on Metric Spaces, Academic Press, New York.
- J. Pitman and M. Yor (2003), Infinitely divisible laws associated with hyperbolic functions, Canad. J. Math. 55, 292-330.
- D. Voiculescu (1999), Lectures on free probability, in: Lectures on Probability Theory and Statistics (Saint-Flour, 1998), Springer, 279-349.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0eced54-5682-4234-8001-26ba4a4b9682