Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This comparative study was carried out to investigate the effect of nanosilver, silver-clay nanohybrid, and silver-milled clay nanohybrid coatings on the antibacterial characteristics of paper. Nanosilver (25 ppm) was used as a singleand double-layer coating. The results demonstrated that treatment with pure nanosilver was more efficient in the reduction of microbial growth. Also, milling of clay enabled better maintenance of silver nanoparticles, and led to a greater decrease in bacterial growth than in the case of the original silver-clay nanohybrid. Evaluation of the sustainability of antibacterial characteristics confirmed that, although pure nanosilver treatment achieved better performance in the first 15 minutes than nanohybrid samples, the performance of the nanohybrids improved with the passing of time. As expected, the treatments decreased the brightness of paper, while the opacity increased significantly; pure nanosilver treatment led to lower brightness than the others, and the opacity was higher in the case of the silver-clay nanohybrid than with the other treatments.
Rocznik
Tom
Strony
109--124
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Department of Pulp and Paper Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
autor
- Department of Pulp and Paper Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
autor
- Department of Pulp and Paper Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
autor
- Department of Pulp and Paper Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
autor
- Department of Pulp and Paper Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Bibliografia
- Afra E., Narchin P. [2017]: Creating extended antimicrobial property in paper by means of Ag and nanohybrids of montmorillonite (MMT). Holzforschung 71 [5]: 186-195
- Anderson R.J., Groundwater P.W., Todd A., Worsley A.J. [2012]: Antibacterial agents: chemistry, mode of action, mechanisms of resistance and clinical applications. Press: John Wiley & Sons, Germany
- Barani H. [2014]: Surface activation of cotton fiber by seeding silver nanoparticles and in situ synthesizing ZnO nanoparticles. New Journal of Chemistry 38: 4365-4370
- Bhat G., Hegde R.H., Kamath M.G., Deshpande B. [2008]: Nanoclay Reinforced Fibers and Nonwovens. Journal of Engineered Fibers and Fabrics 3 [3]: 22-34
- Brooks G.F., Carroll K.C., Butel J.S., Morse S.A., Mietzner T.A. [2013]: Jawetz, Melnick and Adelberg’s medical microbiology. Press: McGraw-Hill Co., USA
- Chattopadhyay D.P., Patel B.H. [2009]: Improvement in physical and dyeing properties of natural fibers through pre-treatment with silver nanoparticles. IJFTR 34 [4]: 368-373
- Chen Y.C., Chiang L.C. [2008]: Preparation of cotton fibers with antibacterial silver nanoparticles. Journal of Material Letters 62 [21-22]: 3607-3609
- Ge L., Li Q., Wang M., Ouyang J., Li X., Xing M.Q. [2014]: Nanosilver particles in medical applications: synthesis, performance, and toxicity. International Journal of Nanomedicine 9: 2399-2407
- Girase B., Depan D., Shah J.S., Xu W., Misra R.D.K. [2011]: Silver-clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Materials Science and Engineering 31 [8]: 1759-1766
- Imani R., Talaiepour M., Dutta J., Ghobadinezhad M.R., Hemmasi A.H., Nazhad M.M. [2011]: Production of antibacterial filter paper from wood cellulose. Bioresources 6 [1]: 891-900
- Kim J., Kuk E., Yu K., Kim J., Park S., Lee H., Kim S., Park Y., Park Y., Hwang C. [2007]: Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 3: 95-101
- Lafi S.A., Al-Dulaimy M.R. [2011]: Antibacterial effect of some mineral clays in vitro. Biolog. Sci. 3 [1]: 75-81
- Mirshokrayi S.A., Sadeghifar H. [2001]: Paper Chemistry. Press: Ayij publications, Iran
- Mohtashemi M., Sepehri-Seresht S., Asli A., Boroumand M., Ghasemi A. [2012]: Synthesis of silver nanoparticles thereby chemical reduction and bio-synthesis and investigating their antibacterial activities. Razi Medical Science Journal 19 [10]: 65-74
- Ottesen V., Kumar V., Toivakka M., Chinga-Carrasco G., Syverud K., Gregersen Ø.W. [2017]: Viability and Properties of Roll-to-Roll Coating of Cellulose Nanofibrils on Recycled Paperboard. Nordic Pulp and Paper Research Journal 32 [2]: 179-188
- Rai M., Birla S., Ingle A.P., Gupta I., Gada A., Abd-Elsalam K., Marcato P.D., Duran N. [2014]: Nanosilver: an inorganic nanoparticle with myriad potential applications. Nanotechnology Reviews 3 [3]: 2191-9097
- Roe D., Karandikar B., Bonn-Savage N., Gibbins B., Roullet J. [2008]: Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. Journal of Antimicrobial Chemotherapy 61 [4]: 869-876
- Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash D. [2007]: Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18 [22]: 5103-5111
- Soares N.F.F., Moreira F.K.V., Fialho T.L., Melo N.R. [2012]: Triclosan‐based antibacterial paper reinforced with nano‐montmorillonite: a model nanocomposite for the development of new active packaging. Polymers for Advanced Technologies 23: 901-908
- Sondi I., Sondi S. [2004]: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid Interface Science 275 [1]: 177-182
- Sotiriou G., Pratsinis S.E. [2010]: Antibacterial activity of nanosilver ions and particles. Environmental Science & Technology 44 [14]: 5469-5654
- Thanh N.V.K., Phong N.T.P. [2009]: Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid. Journal of Physics: Conference Series 187 [1]: 1-8
- Vertelov G., Krutyakov Y., Efremenkova O., Olenin A., Lisichkin G. [2008]: A versatile synthesis of highly bactericidal Myramistin stabilized silver nanoparticles. Nanotechnology 19 [35]: 1-7
- Vondruskova H., Slamova R., Trckova M., Zraly Z., Pavlik I. [2010]: Alternative to antibiotic growth promoters in prevention of diarrhoea in weaned piglets. Vaterinarni Medicina. 55 [5]: 199-224
- Wasif A.I., Laga S.K. [2009]: Use of nano silver as an antimicrobial agent for cotton. Autex Research Journal 9 [1]: 5-13
- Wassilkowska A., Czaplicka-Kotas A., Zielina M., Bielski A. [2014]: An Analysis of the Elemental Composition of Micro-Samples Using EDS Technique. Technical Transactions Chemistry. 1-Ch/2014: 133-148
- Zeinaly F., Karimi M., Shakhes J., Mohammadi H. [2016]: Improving the Bleaching Process of Hardwood Chemi-Mechanical Pulp. Cellulose Chemistry and Technology 50 [2]: 285-292
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0eb132f-a169-46f9-a5f4-5aa46b5e89b5