Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background. This study was conducted to assess functional parameters and comfort of a new computer mouse (Ergomice) as compared with three other input devices. Materials and methods. Functional parameters (i.e., task completion time and error rate) of each device were assessed by 10 participants using standardized software based on Standard No. ISO 9241-9:2000. Comfort evaluation was also undertaken for each device using the visual analogue scale technique. Statistical analysis including the Wilcoxon signed-rank test and the Friedman test was performed using SPSS version 16. Results. The functional parameters of the standard mouse were better than those of the other devices. However, no significant difference was observed between this mouse and Ergomice. Overall comfort evaluation showed that the standard mouse and Ergomice were more comfortable to work with. The comfort level of hand/wrist posture in the Ergomice was higher than that of the other three devices. Conclusion. The design features of Ergomice could improve its functional properties. Hand/wrist posture comfort of Ergomice was judged to be high compared with that of the other devices.
Wydawca
Rocznik
Tom
Strony
493--497
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Shiraz University of Medical Sciences, Iran
autor
- Shiraz University of Medical Sciences, Iran
autor
- Shiraz University of Medical Sciences, Iran
autor
- Shiraz University of Medical Sciences, Iran
autor
- Exir Industrial Design Group, Iran
autor
- Shiraz University of Medical Sciences, Iran
Bibliografia
- 1. Lee D.L, McLoone H, Dennerlein J.T. Observed finger behaviour during computer mouse use. Appl Ergon. 2008;39(1):107-113.
- 2. Scarlett D. Ergonomic mice: comparison of performance and perceived exertion. Usability News [Internet]. 2005;7(1):1-5 [cited 2014 June 14]. Available from: http://psychology.wichita.edu/surl/usabilitynews/71/pdf/Usability%20News%2071%20-%20Scarlett.pdf
- 3. Epps BW. Comparison of six cursor control devices based on Fitts’ law models. Proc Hum Factors Ergon Soc Annu Meet. 1986;30(4):327-331.
- 4. Stuart K, William K, Betty J. Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT. Ergonomics. 1978;21(8):601-613.
- 5. Smith W, Edmiston B, Cronin D. Ergonomic test of two hand-contoured mice [Internet]. Palo Alto (CA): Global Ergonomic Technologies [cited 2014 June 14]. Available from: http://ergocanada.com/products/mice/ergonomic/contour_design/perfit/ergonomic_studies/ergotest.pdf
- 6. Karlqvist L, Tornqvist E.W, Hagberg M, et al. Self-reported working conditions of VDU operators and associations with musculoskeletal symptoms: a cross-sectional study focussing on gender differences. Int J Ind Ergon. 2002;30(4):277-294.
- 7. Fogleman M, Brogmus G. Computer mouse use and cumulative trauma disorders of the upper extremities. Ergonomics. 1995;38(12):2465-2475.
- 8. Jensen C, Borg V, Finsen L, et al. Job demands, muscle activity and musculoskeletal symptoms in relation to work with the computer mouse. Scand J Work Environ Health. 1998;24(5):418-424.
- 9. Sauter SL, Schleifer L.M, Knutson S.J. Work posture, workstation design, and musculoskeletal discomfort in a VDT data entry task. Hum Factors. 1991;33(2):151-167.
- 10. MacKenzie IS. A note on the information-theoretic basis for Fitts’ law. J Motor Behav. 1989;21(3):323-330.
- 11. Dehghan N, Choobineh A, Razeghic M, et al. Designing a New Computer Mouse and Evaluating Some of Its Functional Parameters. J Res Health Sci. 2013;14(2):132-135.
- 12. International Organization for Standardization (ISO). Ergonomic requirements for office work with visual display terminals (VDTs) - Part 9: requirements for non-keyboard input devices (Standard No. ISO 9241-9:2000; FDIS - Final Draft International Standard). Geneva: ISO; 2000.
- 13. Zhang X, MacKenzie IS. Evaluating eye tracking with ISO 9241-Part 9. In: Jacko J, editor. Human-computer interaction, Part III, HCII 2007, LNCS 4552 [Internet]. Berlin: Springer; 2007. p. 779–788 [cited 2014 June 14]. Available from: http://www.yorku.ca/mack/45520779.pdfhttp://www.yorku.ca/mack/45520779.pdf
- 14. Douglas SA, Kirkpatrick AE, MacKenzie IS. Testing pointing device performance and user assessment with the ISO9241, Part 9 standard [Internet]. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ‘99); 1999, p. 215-22. New York: ACM [cited 2014 June 14]. Available from: http://www.yorku.ca/mack/CHI99b.html
- 15. Straker LM. Body discomfort assessment tools. In: Karwowski W, Marras WS, editors. The occupational ergonomics handbook. Boca Raton (FL): CRC Press; 1999. p. 1239-1252.
- 16. Müller C, Tomatis L, Läubli T. Muscular load and performance compared between a pen and a computer mouse as input devices. Int J Ind Ergon. 2010;40(6):607-617.
- 17. Lee YH, Su MC. Design and validation of a desk-free and posture-independent input device. Appl Ergon. 2008;39(3):399-406.
- 18. Capener N. The hand in surgery. J Bone Joint Surg. 1956;38-B(1):128-151.
- 19. Wobbrock JO, Shinohara K, Jansen A. The effects of task dimensionality, endpoint deviation, throughput calculation, and experiment design on pointing measures and models. Proceedings of the ACM conference on Human factors in computing systems (CHI'11); 2011; Vancouver: ACM, p. 1639-1648.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0eadd8e-6d3e-4545-afa6-73bd3e98f344
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.