PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synneusis: does its preservation imply magma mixing?

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ghansura Felsic Dome (GFD) occurring in the Bathani volcano-sedimentary sequence was intruded by mafic magma during its evolution leading to magma mixing. In addition to the mafic and felsic rocks, a porphyritic intermediate rock occurs in the GFD. The study of this rock may significantly contribute toward understanding the magmatic evolution of the Ghansura dome. The porphyritic rock preserves several textures indicating its hybrid nature, i.e. that it is a product of mafic-felsic magma mixing. Here, we aim to explain the origin of the intermediate rock with the help of textural features and mineral compositions. Monomineralic aggregates or glomerocrysts of plagioclase give the rock its characteristic porphyritic appearance. The fact that the plagioclase crystals constituting the glomerocrysts are joined along prominent euhedral crystal faces suggests the role of synneusis in the formation of the glomerocrysts. The compositions of the glomerocryst plagioclases are similar to those of plagioclases in the mafic rocks. The results from this study indicate that the porphyritic intermediate rock formed by the mixing of a crystal-rich mafic magma and a crystal-poor felsic melt.
Czasopismo
Rocznik
Strony
99--117
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
  • Cotton University, Assam, India
autor
  • University of Delhi, Delhi, India
Bibliografia
  • Acharyya, S.K. (2003). The nature of Mesoproterozoic central Indian tectonic zone with exhumed and reworked older granulites. Gondwana Research, 6, 197-214. DOI: 10.1016/S1342-937X(05)70970-9.
  • Ahmad, M. & Paul, A.Q. (2013). Investigation of Volcano-Sedimentary Sequence and Associated Rocks to Identify Gold and Base Metal Mineralization at Gere-Kewti Area of Gaya District, Bihar (G4). Unpublished Report Geological Society of India, Bangalore.
  • Bachmann, O. & Bergantz, G.W. (2004). On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. Journal of Petrology, 45, 1565-1582. DOI: 10.1093/petrology/egh019.
  • Baxter, S. & Feely, M. (2002). Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76, 63-74. DOI: 10.1007/s007100200032.
  • Brothers, R.N. (1964). Petrofabric analyses of Rhum and Skaergaard layered rocks. Journal of Petrology, 6, 255- 274. DOI: 10.1093/petrology/5.2.255.
  • Brown, G.M. (1956). The layered ultrabasic rocks of Rhum, Inner Hebrides. Philosophical Transactions of the Royal Society London, Ser. B, 240, 1-53. DOI: 10.1098/rstb.1956.0011.
  • Castro, A., De la Rosa, J.D. & Stephens, W.E. (1990). Magma mixing in the subvolcanic environment: petrology of the Gerena interaction zone near Seville, Spain. Contributions to Mineralogy and Petrology, 105, 9-26. DOI: 10.1007/BF00306405.
  • Charreteur, G., & Tegner, C. (2013). Magmatic emulsion texture formed by mixing during extrusion, Raudafell composite complex, Breiddalur volcano, eastern Iceland. Bulletin of Volcanology, 75, 721. DOI: 10.1007/s00445-013-0721-6.
  • Chatterjee, N. & Ghosh, N.C. (2011). Extensive early neoproterozoic highgrade metamorphism in North Chotanagpur Gneissic Complex of the central Indian tectonic zone. Gondwana Research, 20, 362-379. DOI: 10.1016/j.gr.2010.12.003.
  • Clague, D.A., Moore, J.G., Dixon, J.E., & Friesen, W.B. (1995). Petrology of submarine lavas from Kilaueas Puna Ridge, Hawaii. Journal of Petrology, 36, 299-349. DOI: 10.1093/petrology/36.2.299.
  • DePaolo, D.J. (1981). Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53, 189-202. DOI: 10.1016/0012-821X(81)90153-9.
  • Dowty, E. (1980). Synneusis reconsidered. Contributions to Mineralogy and Petrology, 74, 75-84. DOI: 10.1007/BF00375491.
  • Eichelberger, J.C. (1975). Origin of andesite and dacite; evidence of magma mixing at Glass Mountain in California and the other Circum-Pacific volcanoes. Geological Society of America Bulletin, 86, 1381-1391. DOI: 10.1130/0016-7606(1975)86<1381:OOAADE>2.0.CO;2.
  • Faure, G. (1986). Principles of Isotope Geology. Chichester: J. Wiley & Sons.
  • Gogoi, B., Saikia, A., & Ahmad, M. (2017). Titanite-centered ocellar texture: A petrological tool to unravel the mechanism enhancing magma mixing. Periodico di Mineralogia, 86, 245-273.
  • Gogoi, B., Saikia, A. & Ahmad, M. (2018a) Field evidence, mineral chemical and geochemical constraints on mafic-felsic magma interactions in a vertically zoned magma chamber from the Chotanagpur Granite Gneiss Complex of Eastern India. Chemie der Erde, 78(1), 78-102. DOI: 10.1016/j.chemer.2017.11.003.
  • Gogoi, B., Saikia, A., Ahmad, M. & Ahmad, T. (2018b). Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India. Mineralogy and Petrology, 112, 393-413. DOI: 10.1007/s00710-017-0540-0.
  • Gogoi, B. & Saikia, A. (2018). Role of viscous folding in magma mixing. Chemical Geology, 501, 26-34. DOI: 10.1016/j.chemgeo.2018.09.035.
  • Grove, T.L., Kinzler, R.J., Baker, M.B., Donelly-Nollan, J.M. & Lesher, C.E. (1988). Assimilation of granite by basaltic magma at Burnt Lava Flow, Medicine Lake Volcano, Northern California, decoupling of heat and mass-transfer. Contributions to Mineralogy and Petrology, 99, 320-343.
  • Hawkesworth, C.J., Blake, S., Evans, P., Hughes, R., Macdonald, R., Thomas, L.E., Turner, S.P. & Zellmer, G. (2000). Time scales of crystal fractionation in magma chambers. Integrating physical, isotopic and geochemical perspectives. Journal of Petrology, 41, 991-1006. DOI: 10.1093/petrology/41.7.991.
  • Hibbard, M.J. (1991). Textural anatomy of twelve magma-mixed granitoid systems. In J. Didier & B. Barbarin (Eds.) Enclaves and granite petrology (pp. 431-444). Elsevier, Amsterdam.
  • Hildreth, W. & Wilson, C.J.N. (2007). Compositional zoning of the Bishop Tuff. Journal of Petrology, 48, 951- 999. DOI: 10.1093/petrology/egm007.
  • Hogan, J.P. (1993). Monomineralic Glomerocrysts: Textural Evidence for Mineral Resorption During Crystallization of Igneous Rocks. The Journal of Geology, 101, 531-540.
  • Huppert, H.E., Turner, J.S., Stephen, R. & Sparks, J. (1982). Replenished magma chambers; effects of compositional zonation and input rates. Earth and Planetary Science Letters, 57, 345-357. DOI: 10.1016/0012-821X(82)90155-8.
  • Ikeda, S., Toriumi, M., Yoshida, H. & Shimizu, I. (2002). Experimental study of the textural development of igneous rocks in the late stage of crystallization: the importance of interfacial energies under non-equilibrium conditions. Contributions to Mineralogy and Petrology, 142, 397-415. DOI: 10.1007/s004100100300.
  • Jerram, D.A., Cheadle, M.J. & Philpotts, A.R. (2003). Quantifying the Building Blocks of Igneous Rocks: Are Clustered Crystal Frameworks the Foundation? Journal of Petrology, 44, 2033-2051. DOI: 10.1093/petrology/egg069.
  • Koyaguchi, T. (1986). Textural and compositional evidence for magma mixing and its mechanism, Abu volcano group, Southwestern Japan. Contributions to Mineralogy and Petrology, 93, 33-45. DOI: 10.1007/BF00963583.
  • Larsen, E.S., Irving, J., Gonyer, F. & Larsen, E.S.III. (1938). Petrologic results of study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado. American Mineralogist, 23, 227-257.
  • Luhr, J.F. & Carmichael, I.S.E. (1980). The Colima volcanic complex, Mexico, I. Post caldera andesites from Volcan Colima. Contributions to Mineralogy and Petrology, 71, 343-372. DOI: 10.1007/BF00374707.
  • Marsh, B.D. (1998). On the interpretation of crystal size distributions in magmatic systems. Journal of Petrology, 39, 553-599. DOI: 10.1093/petroj/39.4.553.
  • Martin, V.M., Holness, M.B. & Pyle, D.M. (2006). Textural analysis of magmatic enclaves from the Kameni Islands, Santorini, Greece. Journal of Volcanology and Geothermal Research, 154, 89-102. DOI: 10.1016/j.jvolgeores.2005.09.021.
  • Murata, K. J. & Richter, D. H. (1966). The settling of olivine in Kilauean magma as shown by lavas of the 1959 eruption. American Journal of Science, 264, 194-203. DOI: 10.2475/ajs.264.3.194.
  • Perugini, D., Poli, G., Christofides, G. & Eleftheriadis, G. (2003). Magma mixing in the Sithonia Plutonic Complex, Greece: evidence from mafic microgranular enclaves. Mineralogy and Petrology, 78(3-4), 173-200. DOI: 10.1007/s00710-002-0225-0.
  • Pietranik, A. & Koepke, J. (2009). Interactions between dioritic and granodioritic magmas in mingling zones: plagioclase record of mixing, mingling and subsolidus interactions in the Gęsiniec Intrusion, NE Bohemian Massif, SW Poland. Contributions to Mineralogy and Petrology, 158, 17-36. DOI: 10.1007/s00410-008-0368- z.
  • Pouchou, J.L. & Pichoir, F. (1987). Basic expressions of PAP computation for quantitative EPMA. Proceedings of ICXOM 11, Ontario, 249-253.
  • Renjith, M.L. (2014). Micro-textures in plagioclase from 1994 - 1995 eruption, Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone. Geoscience Frontiers, 5, 113-126. DOI: 10.1016/j.gsf.2013.03.006.
  • Renjith, M.L., Charan, S.N., Subbarao, D.V., Babu, E.V.S.S.K. & Rajashekhar, V.B. (2014). Grain to outcropscale frozen moments of dynamic magma mixing in the syenite magma chamber, Yelagiri Alkaline Complex, South India. Geoscience Frontiers, 5, 801-820. DOI: 10.1016/j.gsf.2013.08.006.
  • Saikia, A., Gogoi, B., Ahmad, M. & Ahmad, T. (2014). Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcano-sedimentary sequence of Chotanagpur Granite Gneiss Complex. Journal of Earth System Science, 123(5), 959-987. DOI: 10.1007/s12040-014-0455-7.
  • Sakuyama, M. (1981). Petrological study of the Myoko and Kurohime volcanoes, Japan: Crystallization sequence and evidence for magma mixing. Journal of Petrology, 22, 553-583. DOI: 10.1093/petrology/22.4.553.
  • Schwindinger, K.R. (1999). Particle dynamics and aggregation of crystals in a magma chamber with application to Kilauea Iki olivines. Journal of Volcanology and Geothermal Research, 88, 209-238. DOI: 10.1016/S0377- 0273(99)00009-8.
  • Schwindinger, K.R. & Anderson, A.T. Jr. (1989). Synneusis of Kilauea Iki olivines. Contributions to Mineralogy and Petrology, 103, 187-198. DOI: 10.1007/BF00378504.
  • Singer, B.S., Andersen, N.L., Le Mével, H. & others (2014). Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile. GSA Today, 24, 4-10. DOI: 10.1130/GSATG216A.1.
  • Sosa-Ceballos, G., Gardner, J.E., Siebe, C. & Macías, J.L. (2012). A caldera-forming eruption 14,100 14C yr BP at Popocatépetl volcano, México: Insights from eruption dynamics and magma mixing. Journal of Volcanology and Geothermal Research, 213-214, 27-40. DOI: 10.1016/j.jvolgeores.2011.11.001.
  • Sparks, R.S., Sigurdsson, H. & Wilson, L. (1977). Magma mixing: a mechanism for triggering acid explosive eruptions. Nature, 267, 315-317. DOI: 10.1038/267315a0.
  • Stull, R.J. (1979). Mantled feldspars and synneusis. American Mineralogist, 64, 514-518.
  • Takahashi, R. & Nakagawa M. (2012). Formation of a Compositionally Reverse Zoned Magma Chamber: Petrology of the AD 1640 and 1694 Eruptions of Hokkaido-Komagatake Volcano, Japan. Journal of Petrology, 54, 815-838. DOI: 10.1093/petrology/egs087.
  • Vance, J.A. (1969). On synneusis. Contributions to Mineralogy and Petrology, 24, 7-29. DOI: 10.1007/BF00398750.
  • Vernon, R.H., Etheridge, M.A. & Wall, V.J. (1988). Shape and microstructure of microgranitoid enclaves: indicators of magma mingling and flow. Lithos, 22, 1-11.
  • Vogt, J.H.L. (1921). The physical chemistry of the crystallization and magmatic differentiation of igneous rocks. Journal of Geology, 28, 318-350.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0ea7c84-b531-47f6-9600-461d70ba844f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.