PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A facile and effective method for preparation of 2.5-furandicarboxylic acid via hydrogen peroxide direct oxidation of 5-hydroxymethylfurfural

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, 2,5-furandicarboxylic acid (FDCA) was efficiently prepared by the direct oxidation of 5-hydroxymethylfurfural (5-HMF) using hydrogen peroxide (H2O2) in alkaline conditions without any catalysts. The effects of reaction parameters on the process were systematically investigated and the optimal parameters were obtained as follows: molar ratio of 5-HMF:KOH: H2O2  was 1:4:8, reaction temperature and reaction time were determined as 70°C and 15 minutes, respectively. Under these conditions, the yield of FDCA was 55.6% and the purity of FDCA could reach 99%. Moreover, we have speculated the detailed oxidation mechanism of 5-HMF assisted by hydrogen peroxide in alkaline condition to synthesize FDCA.
Rocznik
Strony
11--16
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Changchun University of Technology, School of Chemical Engineering, Changchun 130012, P.R. China
  • Jilin Institute of Chemical Technology, Institute of Petrochemical Technology, Jilin 132022, P.R. China
autor
  • Changchun University of Technology, School of Chemical Engineering, Changchun 130012, P.R. China
Bibliografia
  • 1. Lichtenthaler, F.W. & Peters, S. (2004). Carbohydrates as green raw materials for the chemical industry. Comptes. Rendus. Chimie. 7, 65-90. DOI: 10.1016/j.crci.2004.02.002.
  • 2. Siankevich, S., Savoglidis, G., Fei, Z., Laurenczy, G., Alexander, DTL. & Yan, N., et al. (2014). A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. J. Catal. 315, 67-74. DOI: 10.1016/j.jcat.2014.04.011.
  • 3. Corma, A., Iborra, S. & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411-2502. DOI: 10.1021/cr050989d.
  • 4. Chheda, J.N., Huber, G.W. & Dumesic, J.A. (2007). Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. 46, 7164-7183. DOI: 10.1002/anie.200604274.
  • 5. Gandini, A. & Belgacem, M.N. (1997). Furans in polymer chemistry. Prog. Polym. Sci. 22, 1203-1379.
  • 6. Moreau, C., Belgacem, M.N. & Gandini, A. (2004). Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal. 27, 11-30. DOI: 10.1023/B:TOCA.0000013537.13540.0e.
  • 7. Davis, S.E., Houk, L.R., Tamargo, E.C., Datye, A.K. & Davis, R.J. (2011). Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal. Today. 160, 55-60. DOI: 10.1016/j.cattod.2010.06.004.
  • 8. Boisen, A., Christensen, T.B., Fu, W., Gorbanev, Y.Y., Hansen, T.S. & Jensen, J.S., et al. (2009). Process integration for the conversion of glucose to 2,5-furandicarboxylic acid. Chem. Eng. Res. Des. 87, 1318-1327. DOI: 10.1016/j.cherd.2009.06.010.
  • 9. Jain, A., Jonnalagadda, S.C., Ramanujachary, K.V. & Mugweru, A. (2015). Selective oxidation of 5-hydroxymethyl- -2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst. Catal. Commun. 58, 179-182. DOI: 10.1016/j. catcom.2014.09.017.
  • 10. Su, Y., Brown, H.M., Huang, X., Zhou, X., Amonette, J.E. & Zhang, Z.C. (2009). Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Appl. Catal. A: Gen. 361, 117-122. DOI: 10.1016/j. apcata.2009.04.002.
  • 11. Moreau, C., Durand, R., Raziglade, S., Duhamet, J., Faugeras, P. & Rivalier, P., et al. (1996). Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl. Catal. A: Gen. 145, 211-224. DOI: 10.1016/0926-860X(96)00136-6.
  • 12. Chheda, J.N., Leshkov, R.Y. & Dumesic, J.A. (2007). Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green. Chem. 9, 342-350. DOI: 10.1039/b611568c.
  • 13. Gandini, A., Silvestre, A.J.D., Neto, C.P., Sousa, A.F. & Gomes, M. (2009). The furan counterpart of poly(ethylene terephthalate): an alternative material based on renewable resources. J. Polym. Sci. 47, 295-298. DOI: 10.1002/pola.23130.
  • 14. Jiang, M., Liu, Q., Zhang, Q., Ye, C. & Zhou, G.Y. (2012). A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J. Polym. Sci. 50, 1026-1036. DOI: 10.1002/pola.25859.
  • 15. Ma, J.P., Pang, Y., Wang, M., Xu, J., Ma, H. & Nie, X. (2012). The copylymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials. J. Mater. Chem. 22, 3457-3461. DOI: 10.1039/c2jm15457a.
  • 16. Werpy, T. & Petersen, G. Report No. NREL/TP-510-35523 (2004).
  • 17. Yu, Z.L., Zhou, J.D., Zhang, J., Huang, K.X., Cao, F. & Wei, P. (2014). Evaluating effects of biobased 2,5-furandicarboxylate esters as plasticizers on the thermal and mechanical properties of poly (vinyl chloride) J. Appl. Polym. 40938, 1-10. DOI: 10.1002/app.40938.
  • 18. Verdeguer, P., Merat, N. & Gaset, A. (1993). Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique. J. Mol. Catal. 85, 327-344. DOI: 10.1016/0304-5102(93)80059-4.
  • 19. Casanova, O., Iborra, S. & Corma, A. (2009). Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. Chem. Sus. Chem. 2, 1138-1144. DOI: 10.1002/cssc.200900137.
  • 20. Gorbanev, Y.Y., Kegnæs, S. & Riisager, A. (2011). Selective aerobic oxidation of 5-Hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium -based supports. Catal. Lett. 141, 1752-1760. DOI: 10.1007/ s10562-011-0707-y.
  • 21. Zhang, Z.H. & Deng, K.J. (2015). Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS. Catal. 5, 6529-6544. DOI: 10.1021/acscatal.5b01491.
  • 22. Partenheimer, W. & Grushin, V.V. (2001). Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal=bromide catalysts. Adv. Synth. Catal. 343, 102-111. DOI: 10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q.
  • 23. Saha, B., Dutta, S. & Abu-Omar, M.M. (2012). Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts. Catal. Sci. Technol. 2, 79-81. DOI: 10.1039/c1cy00321f.
  • 24. Miura, T., Kakinuma, H., Kawano, T. & Matsuhisa, H. (2008). Method for producing furan-2,5-dicarboxylic acid. UK Patent 7411078.
  • 25. Li, S., Su, K.M., Li, Z.H. & Cheng, B. (2016). Selective oxidation of 5-hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex. Green. Chem. 18, 2122-2128. DOI: 10.1039/c5gc01991e.
  • 26. Duke, F.R. & Haas, T.W. (1961). The homogeneous base-catalyzed decomposition of hydrogen peroxide. J. Phys. Chem. 65, 304-306. DOI: 10.1021/j100820a028.
  • 27. Sato, K., Hyodo, M., Takagi, J., Aoki, M. & Noyori, R. (2000). Hydrogen peroxide oxidation of aldehydes to carboxylic acids: an organic solvent-, halide- and metal-free procedure. Tetrahedron. Lett. 41, 1439-1442. DOI: 10.1016/ S0040-4039(99)02310-2.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0e29b33-386d-455d-a6fd-8fcba707b940
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.