PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability analysis of hybrid active power filter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the analysis of a three-phase hybrid active power filter stability has been presented. Configuration with a single tuned passive filter was used as an example. However, the analysis can be applied to similar configurations of hybrid filters with closed loop control. The article presents a model of the analyzed system in the frequency domain. The division of the model into two independent systems, for positive and negative components, allowed to apply the Nyquist criterion for the stability analysis in this case. As a part of the analysis, the effect of delays, control signal filter parameters, and passive filter parameters have been examined. Based on the presented stability analysis, system parameters for the experimental model of a hybrid power filter have been selected. Finally, experimental results confirming the validity of the analysis have been shown.
Rocznik
Strony
279--286
Opis fizyczny
Bibliogr. 21 poz., tab., wykr., rys., fot.
Twórcy
autor
  • Institute of Electrotechnics and Computer Science, Silesian University of Technology, 10 Akademicka St., 44-100 Gliwice, Poland
autor
  • Institute of Electrotechnics and Computer Science, Silesian University of Technology, 10 Akademicka St., 44-100 Gliwice, Poland
Bibliografia
  • [1] J.C. Das, “Passive filters–potentialities and limitations”, IEEE Trans. on Industry Appl. 40 (1), 232–241 (2004).
  • [2] H. Akagi, E.H.Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, Wiley–IEEE Press, London, 2007.
  • [3] H. Akagi, “Modern active filters and traditional passive filters”, Bull. Pol. Ac.: Tech. 54 (3), 255–269 (2006).
  • [4] P. Mattavelli, “A closed-loop selective harmonic compensation for active filters”, IEEE Trans. Ind. Appl. 37 (1), 81–89 (2001).
  • [5] T. Płatek, “Power system stability with parallel active filter ensuring compensation of capacitive reactive power of a resonant LC circuit”, Bull. Pol. Ac.: Tech. 60 (2), 353–361 (2012).
  • [6] Li Tao and Liu Yongqiang, “The influence of shunt active power filter on stability and performance in considering time-delay”, Mathematical Problems in Engineering 2013, ID 345748, 9 (2013).
  • [7] A. Bhattacharya, C. Chakraborty, and S. Bhattacharya, “Parallel-connected shunt hybrid active power filters operating at different switching frequencies for improved performance”, IEEE Trans. Ind. Electronics 59 (11), 4007–4019 (2012).
  • [8] P. Salmeroˇen and S.P. Litraˇen, “A control strategy for hybrid power filter to compensate four-wires three-phase systems”, IEEE Trans. Power Electronics 25 (7), 1923–1931 (2010).
  • [9] M. Pasko and D. Buła, “Hybrid active power filters”, Przegląd Elektrotechniczny (Electrical Review) 83 (7/8), 1–5 (2007).
  • [10] D. Buła and M. Pasko, “Dynamical properties of hybrid power filter with single tuned passive filter”, Przegląd Elektrotechniczny (Electrical Review) 87 (1), 91–95 (2011).
  • [11] W. Tangtheerajaroonwong, T. Hatada, K. Wada, and H. Akagi, “Design and performance of a transformerless shunt hybrid filter integrated into a three–phase diode rectifier”, IEEE Trans. Power Electron. 22 (5), 1882–1889 (2007).
  • [12] H. Akagi and K. Isozaki, “A hybrid active filter for a threephase 12-pulse diode rectifier used as the front end of a medium-voltage motor drive”, IEEE Trans. Power Electronics 27 (1), 69–77 (2012).
  • [13] R. Inzunza and H. Akagi, “A 6.6–kV transformerless shunt hybrid active filter for installation on a power distribution system”, IEEE Trans. Power Electron. 20 (4), 893–900 (2005).
  • [14] F.Z. Peng, H. Akagi, and A. Nabae, “Compensation characteristics of the combined system of shunt passive and series active filters”, IEEE Trans. Ind. Appl. 29 (1), 144–152 (1993).
  • [15] Shi Xiaojie, Shen Yuwen, Zhang Junming, Qian Zhaoming, and F.Z. Peng, “Optimum design consideration and implementation of a parallel hybrid active power filter integrated into a three-phase capacitive diode rectifier”, Proc. APEC 2011 1, 91–97 (2011).
  • [16] S. Srianthumrong, H. Fujita, and H. Akagi, “Stability analysis of a series active filter integrated with a double-series diode rectifier”, IEEE Trans. Power Electronics 17 (1), 117–124 (2002).
  • [17] Tong Liqing, Qian Zhaoming, Yantao Song, Kuang Naixing, and F.Z. Peng, “Analysis and design of a novel phase-lead compensation control strategy for the SHAPF”, Proc. APEC 2007 1, 692–697 (2007).
  • [18] D. Basic, V.S. Ramsden, and P.K. Muttik, “Harmonic filtering of high-power 12-pulse rectifier loads with a selective hybrid filter system”, IEEE Trans. Power Electronics 48 (6), 1118–1127 (2001).
  • [19] Wu Longhui, Zhuo Fang, Zhang Pengbo, Li Hui, and Wang Zhaoan, “Stability analysis and controller design of hybrid compensation system with parallel active power filter and parallel capacitors”, Proc. PESC 2007 1, 1105–1111 (2007).
  • [20] J. Klamka, A. Czornik, and M. Niezabitowski, “Stability and controllability of switched systems”, Bull. Pol. Ac.: Tech. 61 (3), 547–554 (2013).
  • [21] M. Pasko, M. Maciążek, and D. Buła, “Performance and accuracy comparison of fixed and floating-point realizations of the active power filter control algorithm”, Przegląd Elektrotechniczny (Electrical Review) 85 (1), 162–165 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0e25294-fd97-43b4-8e0c-7800e7569305
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.