PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rare earth elements in Fe-Mn nodules from southern Baltic Sea – a preliminary study

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Pierwiastki ziem rzadkich w konkrecjach Fe-Mn z południowego Bałtyku – badania wstępne
Konferencja
Kongres surowcowy = Raw materials congress : 5. Konferencja: Złoża kopalin - aktualne problemy prac poszukiwawczych, badawczych i dokumentacyjnych = 5th Conference: Natural resources - current problems of prospection, exploration and documentation ; 28. Konferencja: Aktualia i perspektywy gospodarki surowcami mineralnymi = 28th Conference: Updates and prospects of mineral resources management / pod red. nauk. Stanisława Z. Mikulskiego
Języki publikacji
EN
Abstrakty
EN
Between 1976–1990, the Polish Geological Institute performed geological works in the Polish Maritime Areas. During these works, 260 occurrences of concretions were recorded from 7,500 sampled sites. In 1980, the threshold that separates the Bornholm Basin from the Słupsk Furrow was mapped. Numerous Fe-Mn nodules on the seabed were found in that area. The results of detailed analyses of nodule samples collected from four sites are presented in this paper. Analyzed nodules represent discoidal D, irregular I, and transitional D-I types. The nodules are characterized by varied chemical composition of main oxides (Fe, Mn). The maximum Fe2O3 content is 26.63% and MnO 23.18%. Total average amount of REE + Y in the samples is approximately 165.11 ppm, ΣLREE 145.72 ppm and ΣHREE 19.39 ppm. The LREE content is enriched in comparison to HREE. The majority of nodules consist of Fe-Mn oxy-hydroxide minerals with very low crystallinity (practically amorphous phases). The main confirmed Mn-phases are birnessite and todorokite. Other main components of the nodules are: detrital quartz, albite, microcline, glauconite and muscovite, clinochlore, and clay minerals: illite and chlorite. The rate of growth of Fe-Mn nodules has been estimated using a cobalt chronometer. The nodule growth rate ranges from 0.006 to 0.134 mm/yr –1. Based on the Fe, Mn and (Cu + Co + Ni) contents, the origin of studied nodules is determined as hydrogenetic, while using REE (Cesn/Cesn • vs. Nd) – as diagenetic.
PL
W latach 1976–1990 Państwowy Instytut Geologiczny realizował prace geologiczne na Polskich Obszarach Morskich. Opróbowano 7500 miejsc, a w 260 stwierdzono występowanie konkrecji. W roku 1980 prace kartograficzne prowadzono m.in. na obszarze progu oddzielającego Basen Bornholmski od Rynny Słupskiej, gdzie stwierdzono występowanie licznych konkrecji Fe-Mn. W niniejszym artykule są prezentowane wyniki analiz konkrecji pobranych na 4 stanowiskach. Badania dotyczą konkrecji następujących typów: dyskoidalnych D, nieregularnych I oraz przejściowych D-I. Badane konkrecje charakteryzują się zmiennym składem głównych tlenków (Fe, Mn). Maksymalna zawartość Fe2O3 wynosi 26,63%, a MnO 23,18%. Łączna średnia zawartość REE + Y w badanych próbkach jest na poziomie 165,11 ppm, ΣLREE – 145,72 ppm i ΣHREE – 19,39 ppm. Zauważalne jest wzbogacenie w LREE w porównaniu do HREE. Konkrecje w większości są zbudowane z tlenków i wodorotlenków Fe i Mn o bardzo niskim stopniu krystaliczności (praktycznie fazy mineralne są amorficzne). Głównymi potwierdzonymi fazami manganu są birnessyt i todorokit. Pozostałymi głównymi składnikami konkrecji są: kwarc terygeniczny, albit, mikroklin, glaukonit i muskowit, klinochlor, minerały ilaste: illit, chloryt. Wartość tempa wzrostu w badanych konkrecjach, określona z użyciem chronometru kobaltowego, wynosi od 0,006 do 0,134 mm/yr –1. Na podstawie zawartości Fe, Mn oraz (Cu + Co + Ni) badane konkrecje określono jako hydrogeniczne, podczas gdy używając zależności REE (Cesn/Cesn • vs. Nd) jako diagenetyczne.
Słowa kluczowe
Rocznik
Tom
Strony
199--212
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr., zdj.
Twórcy
autor
  • Polish Geological Institute – National Research Institute, 4 Rakowiecka Street, 00-975 Warsaw, Poland
  • University of Warsaw, Faculty of Geology, 93 Żwirki i Wigury Street, 02-089 Warsaw, Poland
  • Polish Geological Institute – National Research Institute, 4 Rakowiecka Street, 00-975 Warsaw, Poland
autor
  • Polish Geological Institute – National Research Institute, 4 Rakowiecka Street, 00-975 Warsaw, Poland
Bibliografia
  • 1. ANUFRIEV G.S., BOLTENKOV B.S., 2007 – Ferromanganese Nodules of the Baltic Sea: Composition, Helium Isotopes, and Growth Rate. Lithol. Min. Res., 42, 3: 240–245.
  • 2. BATURIN G.N., 2009 – Geochemistry of Ferromanganese Nodules in the Gulf of Finland, Baltic Sea. Lithol. Min. Res., 44, 5: 411–426.
  • 3. BATURIN G.N., DOBRETSOVA I.G., DUBINCHUK V.T., 2014 – Hydrothermal manganese mineralization in the Peterbourgskoye ore field (North Atlantic). Oceanology, 54: 222–230.
  • 4. BAU M., SCHMIDT K., KOSCHINSKY A., HEIN J., KUHN T., USUI A., 2014 – Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol., 381: 1–9.
  • 5. BONATTI E., KRAEMER T., RYDELL H., 1972 – Classification and genesis of submarine iron-manganese deposits. In: Ferromanganese deposits on the ocean floor (ed. D.R. Horn): 149–166. NSF, Washington.
  • 6. BOSTRÖM K., WIBORG L., INGRI J., 1982 – Geochemistry and origin of ferromanganese concretions in the Gulf of Bothnia. Marine Geology, 50: 1–24.
  • 7. CALVERT S.E., PRICE N.B., 1977 – Shallow water, continental margin and lacustrine nodules: Distribution and geochemistry. In: Marine Manganese Deposits (ed. G.P. Glasby): 45–86. Elsevier, Amsterdam.
  • 8. DUBININ A.V., SVAL’NOV V.N., USPENSKAJA T.Y., 2008 – Geochemistry of the Authigenic Ferromanganese Ore Formation in Sediments of the Northeast Pacific Basin. Lithol. Min. Res., 43, 2: 99–110.
  • 9. DULIU O.G., ALEXE V., MOUTTE J., SZOBOTCA S.A., 2009 – Major and trace element distributions in manganese nodules and micronodules as well as abyssal clay from the Clarion-Clipperton abyssal plain, Northeast Pacific. Geo-Mar. Lett., 29, 2: 71–83.
  • 10. EHRLICH A.M., 1968 – Rare earth abundances in manganese nodules. Massachusetts Institute of Technology, Cambridge, Mass [Ph.D. Thesis, unpublished].
  • 11. EMELYANOV E.M., BOBROV V.A., KRAVTCOV V.A., STANCHENKO L.Y., KOLESNIK T.B., 2002 – Some aspects of distribution of REE in the bottom sediments of the Baltic Sea. In: 7th Marine Geological Conference – The Baltic, Abstract, 38. Kaliningrad, Russia, 21–27 April 2002.
  • 12. GHIORSE W.C., 1980 – Electron microscopic analysis of metal-depositing microorganisms in surface layers of Baltic Sea ferromanganese concretions. In: Biogeochemistry 705 of Ancient and Modern Environments (eds. A.R. Trudinger, M.R. Walter): 345–354. Springer-Verlag, New York.
  • 13. GLASBY G.P. (eds.), 1977 – Marine manganese deposits: 12–523. Elsevier, Amsterdam.
  • 14. GLASBY G.P., EMELYANOV E.M., ZHAMOIDA V.A., BATURIN G.N., LEIPE T., BAHLO R., BONACKER P., 1997 – Environments formation of ferromanganese concretions in the Baltic Sea: a critical review. In: Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits (eds. K. Nicholson, J.R. Hein, B. Bühn, S. Dasgupta). Geol. Soc. Spec. Publ., London, 119: 213–237.
  • 15. GLASBY G.P., UŚCINOWICZ SZ., SOCHAN J.A., 1996 – Marine ferromanganese concretions from Polish Exclusive Economic Zone: Influence of major inflows of North Sea water. Marine Georesources and Geotechnology, 14: 335–352.
  • 16. GONZÁLEZ F.J., SOMOZA L., HEIN J.R., MEDIALDEA T., LEÓN R., URGORRI V., REYES J., MARTÍN-RUBÍ J.A., 2016 – Phosphorites, Co-rich Mn nodules, and Fe-Mn crusts from Galicia Bank, NE Atlantic: reflections of Cenozoic tectonics and paleoceanography. Geochem. Geophys. Geosyst., 17: 346–374.
  • 17. GONZÁLEZ F.J., SOMOZA L., LUNAR R., MARTINEZ-FRIAS J., MARTIN RUBI J.A., TORRES T., ORTIZ J.E., DIAZ-DEL-RIO V., 2010 – Internal features, mineralogy and geochemistry of ferromanganese nodules from the Gulf of Cadiz: The role of the Mediterranean Outflow Water undercurrent. Journal of Marine Systems, 80: 203–218.
  • 18. HEIN J.R., KOSCHINSKY A., 2014 – Deep-Ocean Ferromanganese Crusts and Nodules. In: Treatise on Geochemistry, second edition (eds. H.D Holland, K.K. Turekian): 273–289. Elsevier Science, New York.
  • 19. HEIN J.R., KOSCHINSKY A., HALBACH P., MANHEIM F.T., BAU M., KANG J.-K., LUBICK N., 1997 – Iron and manganese oxide mineralization in the Pacific. In: Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits (eds. K. Nicholson, J.R. Hein, B. Bühn, S. Dasgupta). Geol. Soc. Spec. Publ., London, 119: 123–138.
  • 20. HEIN J.R., MIZELL K., KOSCHINSKY A., CONRAD T.A., 2013 – Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev., 51: 1–14.
  • 21. HEUSER H., 1988 – Observations and investigations on the genesis of shallow-water manganese nodules in Kiel Bay (western Baltic). Berichte-Reports, Geologisch-Palaontologisches Institut Universitat Kiel, 26 [in German].
  • 22. HLAWATSCH S., GARBE-SCHONBERG C.D., LECHTENBERG F., MANCEAU A., TAMURAN., KULIK D.A., KERSTEN M., 2002a – Trace metal fluxes to ferromanganese nodules from the western Baltic Sea as a record for long-term environmental changes. Chem. Geol., 182, 697–709.
  • 23. HLAWATSCH S., NEUMANN T., VAN DEN BERG C.M.G., KERSTEN M., HARFF J., SUESS E., 2002b – Fast-growing, shallow-water ferro-manganese nodules from the western Baltic Sea: origin and modes of trace element incorporation. Marine Geology, 182: 373–387.
  • 24. INGRI J., PONTER C., 1986 – Scavenging properties of ferromanganese nodules in the Gulf of Bothnia. Rapp. P.-v. Rèun. Cons. int. Explor. Mer, 186: 234–243.
  • 25. INGRI J., PONTER C., 1987 – Rare earth abundance patterns in ferromanganese concretions from the Gulf of Bothnia and the Barents Sea. Geochim. et Cosmochim. Acta, 51: 155–161.
  • 26. INGRI J., WIDERLUND A., LAND M., GUSTAFSSON O., ANDERSSON P., OHLANDER B., 2000 – Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles. Chem. Geol., 166: 23–45.
  • 27. KOTLIŃSKI R., 1999 – Metallogenesis of the world’s ocean against the background of ocean crust evolution. Pol. Geol. Inst. Sp. Papers, 4: 1–70.
  • 28. KOTLIŃSKI R., SZAMAŁEK K. (eds.), 1998 – Surowce mineralne mórz i oceanów. Wydaw. Nauk. Scholar, Warszawa.
  • 29. KRAMARSKA R., 1991 — Geological map of the Baltic Sea bottom, 1 : 200 000, sheet Ławica Słupska, Ławica Słupska N. Państw. Inst. Geol., Warszawa.
  • 30. KUHN T., WEGORZEWSKI A., RÜHLEMANN C., VINK A., 2017 – Composition, Formation, and Occurrence of Polymetallic Nodules. In: Deep-Sea Mining. Resources Potential, Technical and Environmental Considerations (eds. R. Sharma): 23–64. Springer, Switzerland.
  • 31. KULESZA-OWSIKOWSKA G., 1979 – Iron concretions from the Southern Baltic. Bull. Pol. Acad. Sci., 7, 3–4: 137–141.
  • 32. KULESZA-OWSIKOWSKA G., 1981 – Studium mineralogiczno-geochemiczne konkrecji żelazowo-manganowych Południowego Bałtyku. Archiwum Mineralogiczne, 37, 1.
  • 33. KUNZENDORF H., VALLIUS H., 2004 – Rare earth elements (REE) in deep basins sediments of the Baltic Sea. Baltica, 17, 2: 53–62.
  • 34. LASS H-U., MATTHAÜS W., 2008 – General Oceanography of the Baltic Sea. In: State and Evolution of the Baltic Sea, 1952–2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment (eds. R. Feistel, G. Nausch, N. Wasmund): 5–43. John Wiley & Sons, Inc., New Jersey.
  • 35. LYSUK G., LYSUK A., 2009 – Mineralogy and geochemistry of the ferromanganese nodules of Baltic Sea. Goldschmidt Conference, Abstracts 2009, A808. Internet: goldschmidtabstracts.info/2009/808.pdf (access: 26.10.2018).
  • 36. MANHEIM F.T., 1961 – A geochemical profile in the Baltic Sea. Geochim. et Cosmochim. Acta, 25: 52–70.
  • 37. MANHEIM F.T., 1965 – Manganese-iron accumulations in the shallow marine environment. In: Symposium on MarineGeochemistry (eds. D.R. Schink, J.T. Corless). Occasional Publications of the Narragansett Marine Laboratory, University of Rhode Island, 3: 217–276.
  • 38. MANHEIM F., LANE-BOSTWICK C., 1988 – Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature, 335: 59–62.
  • 39. MCLENNAN S., 1989 – Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev. Mineral. Geochem., 21: 169–200.
  • 40. MERO J.L., 1965 – The mineral resources of the sea. Elsevier, Amsterdam, the Netherlands.
  • 41. MOENKE-BLANKENBURG L., JAHN K., BROGMANN L., 1989 – Laser-micro-analytical studies on distribution patterns of manganese, iron and barium in Fe/Mn-accumulates of the western Baltic Sea. Chemie der Erde, 49: 39–46.
  • 42. MOJSKI J.E. (ed.), 1989–1993 – Geological Map of the Baltic Sea Bottom, 1 : 200 000. Państ. Inst. Geol., Warszawa.
  • 43. NATH B.N., ROELANDTS I., SUDHAKAR M., PLÜGER W.L., 1992 – Rare Earth Element patterns of the Central Indian Basin sediments related to their lithology. Geophys. Res. Lett., 19: 0094–8276.
  • 44. OSADCZUK A., 1991 – Bałtyckie konkrecje żelazowo-manganowe. Zesz. Nauk. Uniwersytetu Szczecińskiego, 86: 65–85.
  • 45. PATTAN J.N., BANAKAR V.K., 1993 – Rare earth element distribution and behavior in buried manganese nodules from the Central Indian Basin. Marine Geology, 112: 303–312.
  • 46. PĘCHERZEWSKI K., 1973 – Wyniki wstępnych badań nad rozmieszczeniem i składem chemicznym konkrecji w Południowym Bałtyku. Zesz. Nauk. Wydziału Biologii i Nauk o Ziemi UG. Oceanografia nr 1 Gdańsk.
  • 47. PIPER D.Z., 1974 – Rare earth elements in ferromanganese nodules and other marine phases. Geochim. et Cosmochim. Acta, 138: 1007–1022.
  • 48. POURRET O., TUDURI J., 2017 – Continental shelves as potential resource of rare earth elements. Sci. Rep., 7, 1: 5857.
  • 49. PRAKASH L.S., RAY D., PAROPKARI A.L., MUDHOLKAR A.V., SATYANARAYANAN M., SREENIVAS B., CHANDRASEKHARAM D., KOTA D., RAJU K.A.K., KAISARY S., BALARAM V., GURAV T., 2012 – Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits. Chem. Geol., 312–313: 127–137.
  • 50. RYABCHUK D., ZHAMOIDAV., GRIGORIEV A., SERGEEV A.YU., NEEVIN I.A., 2017 – Mineral Resources Extraction in the Russian sector of the Baltic Sea and impact of underwater mining on geological environment. Presentation during HELCOM PRESSURE 6–2017, 25–27 April 2017, St. Petersburg, Russia.
  • 51. SUESS E., DJAFARI D., 1977 – Trace metal distribution in Baltic Sea ferromanganese concretions: inferences on accretion rates. Earth and Planetary Science Letters, 35: 49–54.
  • 52. SZEFER P., 2002 – Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier Science B.V., Amsterdam.
  • 53. SZEFER P., GLASBY G.P., KUNZENDORF H., GÖRLICH E.A., LATKA K., IKUTA K., ALI A., 1998 – The distribution of rare earth and other elements and the mineralogy of the iron oxyhydroxide phase in marine ferromanganese concretions from within Slupsk Furrow in the southern Baltic. Appl. Geochem., 13, 3: 305–312.
  • 54. SZEFER P., GLASBY G.P., STÜBEN D., KUSAK A., GELDON J., BERNER Z., NEUMANN T., WARZOCHA J., 1999 – Distribution of selected heavy metals and rare earth elements in surficial sediments from the Polish sector of the Vistula Lagoon. Chemosphere, 39, 15: 2785–2798.
  • 55. TROKOWICZ D., 1998 – Genesis of Ferromanganese Nodule in the Baltic Sea. Pr. Państw. Inst. Geol., 163.
  • 56. UŚCINOWICZ Sz., 2014 – Baltic Sea Continental Shelf. In: Continental Shelves of the World, Their Evolution During Last Glacio-Eustatic Cycle (eds. F. Chiocci, A. Chivas). Geological Society Memoir, London, 41: 69–89.
  • 57. UŚCINOWICZ SZ., SZEFER P., SOKOŁOWSKI K., 2011 – Trace elements in the Baltic Sea Sediments. In: Geochemistry of Baltic sea surface sediments (ed. Sz. Uścinowicz): 214–274. Polish Geological Institute – National Research Institute, Warsaw.
  • 58. VASILJEFF J.A.M., 2015 – Internal structure and geochemical properties of spheroidal ferromanganese concretions of the Baltic Sea. Mc.Thesis. University of Helsinki. Internet: helda.helsinki.fi/bitstream/handle/10138/156633/JoonasWasiljeffMScThesis16092015_rdy.pdf?sequence=2 (access: 26.10.2018).
  • 59. VARENTSOV I.M., BLASHCHISHIN A.I., 1976 – Iron and manganese concretions. In: Geology of the Baltic Sea (eds. V. Gudelis, E. Emelyanov): 307–348. Mokslas Publishers, Vilnius [in Russian].
  • 60. WINTERHALTER B., 1966 – Iron-manganese concretions from the Gulf of Bothnia and the Gulf of Finland. Geoteknillisia julkaisuja, Geologinen tutkimuslaitos, 69: 1–77.
  • 61. WINTERHALTER B., 1980 – Ferromanganese concretions in the Baltic Sea. In: Geology and Geochemistry of Manganese (eds. I.M. Varentsov, G. Grassely): 227–254. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.
  • 62. WINTERHALTER B., 1981 – Ferromanganese concretions. In: The Baltic Sea (ed. A. Voipio). Elsevier Science, Amsterdam-Oxford-New York.
  • 63. WINTERHALTER B., SIIVOLA J., 1967 – An electron microprobe study of the distribution of iron, manganese, and phosphorus in concretions from the Gulf of Bothnia, northern Baltic Sea. Comptes Rendus de la Societe Geologique de la Finlande, 39: 161–172.
  • 64. ZHAMOIDA V., GRIGORIEV A., GRUZDOV K, RYABCHUK D., 2007 – The influence of ferromanganese concretions-forming processes in the eastern Gulf of Finland on the marine environment. In: Holocene sedimentary environment and sediment geochemistry of the Eastern Gulf of Finland (ed. H. Vallius). Geological Survey of Finland, Special Paper, 45: 21–32.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0dc4045-ed0b-4f4f-829c-3e2eb5eb1387
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.