Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Topography (LS factor) is one of the most important controlling factors of soil characteristics and geomorphic processes in the landscape. This study was performed in the Susa Ancient site and aimed to compare the estimation of three diferent LS factor calculation methods in which the catchment area was calculated based on seven types of fow direction algorithms using DEM with fve spatial resolutions. For calculating the LS factor, the catchment area attribute was used to calculate the slope length based on the fow direction. Results showed that the catchment area is an entirely scale-dependent attribute and with decreasing the spatial resolution, the statistical values of catchment area increased. At high spatial resolution, the diferent fow direction algorithms despite the diference in the fow distribution to the neighboring cells, but the catchment area attributes calculated based on them, are statistically slightly diferent. By upscaling, the LS factor values calculated in Boehner and Selige and Moore et al. methods increase, whereas in Desmet and Govers method decrease and this change rate indicates that the LS factors calculated by these three methods have the lowest sensitivity to the slope length. At a same scale, the statistics of LS factors calculated based on diferent fow direction algorithms depicted no considerable diferent. The single fow direction algorithms of Rh and D8 cause to calculate the lowest mean values of LS factors at all spatial resolutions. The diference between frequency distributions of the LS factors calculated by these three methods increases with decreasing spatial resolution. The statistical analysis of this study confrms that estimating the LS factor scale and calculation method are more important than the type of fow direction algorithm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
783--793
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- Soil Science Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
autor
- Soil Science Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Bibliografia
- 1. Azizian A, Kohi S (2019) Evaluating the effect of different methods for calculating topographic factor on sediment delivery rate based on RUSLE model (Case study: Barajin catchment, Qazvin). Iran Water Resour Res 14(5):304–317 (Persian literature)
- 2. Bauer J, Rohdenburg H, Bork H-R (1985) Ein Digitales Reliefmodell als Vorraussetzung fuer ein deterministisches Modell der Wasser- und Stoff-Fluesse. Landschaftsgenese und Landschaftsoekologie, H.10, 1–15
- 3. Boehner J, Selige T (2006) Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In: Boehner J, McCloy KR, Strobl J (eds) SAGA—analysis and modelling applications. Goettinger Geographische Abhandlungen, vol 115, pp 13–27
- 4. Deng Y, Wilson JP, Bauer BO (2007) DEM resolution dependencies of terrain attributes across a landscape. Int J Geogr Inf Sci 21(2):187–213
- 5. Desmet PJJ, Govers G (1996) A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Water Conserv 51(5):427–433
- 6. Evans IS (1979) An integrated system of terrain analysis and slope mapping. Final report on grant DA-ERO-591-73-G0040, University of Durham, England
- 7. Florinsky I (2016) Digital terrain analysis in soil science and geology, 2nd edn. Academic Press, Amsterdam, pp 265–270
- 8. Freeman TG (1991) Calculating catchment area with divergent flow based on a regular grid. Comput Geosci 17(3):413–422
- 9. Fairfield J, Leymarie P (1991) Drainage networks from grid digital elevation models. Water Resour Res 27:709–717
- 10. Gessler PE (1996) Statistical soil–landscape modelling for environmental management. PhD thesis, Australian National University
- 11. Gruber S, Peckham S (2009) Land-surface parameters and objects in hydrology. In: Hengle T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Elsevier, Amsterdam, pp 171–194
- 12. Han X, Liu J, Mitra S, Li X, Srivastava P, Guzman SM, Chen X (2018) Selection of optimal scales for soil depth prediction on headwater hillslopes: a modeling approach. CATENA 163:257–275
- 13. Howland MD, Jones IW, Najjar M, Levy TE (2018) Quantifying the effects of erosion on archaeological sites with low-altitude aerial photography, structure from motion, and GIS: a case study from southern Jordan. J Archaeol Sci 90:62–70
- 14. Hrabalikova M, Janeček M (2017) Comparison of different approaches to LS factor calculations based on a measured soil loss under simulated rainfall. Soil Water Res 12(2):69–77
- 15. Iranian Cultural Heritage, Handicrafts and Tourism Organization (ICHHTO) (2015) Report of evaluation of the nomination of the “Susa” for inscription on the World Heritage List
- 16. Khanifar J, Khademalrasoul A, Amerikhah H (2019) Effects of digital elevation model (DEM) spatial resolution on soil landscape analysis (case study Raakat watershed of Izeh, Khuzestan Province). Appl Soil Res (accepted paper) (Persian literature)
- 17. Kienzle S (2004) The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Trans GIS 8(1):83–111
- 18. Kinner DA (2003) Multi-scale estimation of erosion and deposition in the Mississippi river basin. PhD thesis, University of Colorado
- 19. Li Z, Zhu Q, Gold C (2005) Digital terrain modeling: principles and methodology. CRC Press, Boca Raton, pp 267–284
- 20. McKenzie NJ, Ryan PJ (1999) Spatial prediction of soil properties using environmental correlation. Geoderma 89(1):67–94
- 21. McCool DK, Foster GR, Mutchler CK, Meyer LD (1989) Revised slope length factor in the universal soil loss equation. Trans Am Soc Agr Eng 32:1571–1576
- 22. Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30
- 23. O'Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28(3):323–344
- 24. Park SJ, Rüecker GR, Agyare WA, Akramhanov A, Kim D, Velk PLG (2009) Influence of grid cell size and flow routing algorithm on soil–landform modeling. J Korean Geogr Soc 44(2):122–145
- 25. Pike RJ, Evans IS, Hengl T (2009) Geomorphometry: a brief guide. In: Hengle T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Elsevier, Amsterdam, pp 3–30
- 26. Qin CZ, Zhu AX, Pei T, Li BL, Scholten T, Behrens T, Zhou CH (2011) An approach to computing topographic wetness index based on maximum downslope gradient. Precis Agric 12(1):32–43
- 27. Quinn PFBJ, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol Process 5(1):59–79
- 28. Renard KG, Foster GR, Weesies GA, Porter JP (1991) Revised universal soil loss equation. J Soil Water Conserv 46(1):30–33
- 29. Seibert J, McGlynn BL (2007) A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour Res 43(4):1–8
- 30. Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33(2):309–319
- 31. Wilson, J. P. (2018). Environmental Applications of Digital Terrain Modeling. John Wiley & Sons.
- 32. Wilson JP, Repetto PL, Snyder RD (2000) Effect of data source, grid resolution, and flow routing method on computed topographic attribute. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and application. Wiley, New York, pp 133–161
- 33. Wilson JP, Lam CS, Deng Y (2007) Comparison of the performance of flow-routing algorithms used in GIS-based hydrologic analysis. Hydrol Process Int J 21(8):1026–1044
- 34. Wu S, Li J, Huang GH (2008) A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution. Appl Geogr 28(3):210–223
- 35. Yang X, Tang G, Xiao C, Gao Y, Zhu S (2011) The scaling method of specific catchment area from DEMs. J Geog Sci 21(4):689–704
- 36. Zhang W, Montgomery DR (1994) Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resour Res 30(4):1019–1028
- 37. Zhang HY, Shi ZH, Fang NF, Guo MH (2015) Linking watershed geomorphic characteristics to sediment yield: evidence from the Loess Plateau of China. Geomorphology 234:19–27
- 38. Zhou Q, Liu X (2002) Error assessment of grid-based flow routing algorithms used in hydrological models. Int J Geogr Inf Sci 16(8):819–842
- 39. Zhu X (2016) GIS for environmental applications: a practical approach. Routledge, London
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0d5a39b-2c22-4991-8246-ff8c3146cd37