Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Geochemical-mineralogical factors of anhydrite-to-polyhalite evolution: implications to seismic-water-H2S hazards in mining and quality of sulphate components in building materials
Języki publikacji
Abstrakty
Eksploatacja górnicza składników cementu/betonu napotyka czasem problemy powodowane procesami tektonicznymi i zagrożeniami wodnymi podczas wydobycia skał siarczanowych zawierających polihalit. Polihalit to uwodniony siarczan K-Mg-Ca o dużym znaczeniu gospodarczym, w tym także w przemyśle materiałów budowlanych. Z drugiej strony tradycyjne analizy tektoniczne na potrzeby prognozowania zjawisk sejsmicznych i wodnych często akcentują siły zewnętrzne i relaksację naprężeń indukowanych eksploatacją. Rzadko stawia się pytania o pierwotne, wewnętrzne pochodzenie tych sił. Potencjalna kumulacja naprężeń, wynikająca z wewnętrznych uwarunkowań geochemiczno-mineralogicznych [duże skale ściskania/rozciągania i ruchów mas] bywa pomijana. Uniwersalne podejście przedstawione tutaj dotyczy roli geochemicznie indukowanych zmian objętościowo-temperaturowych w połączeniu z postsedymentacyjną transformacją anhydrytu do polihalitu, co w oczywisty sposób implikuje istotne problemy przy wszelkich robotach górniczych prowadzonych w górotworach anhydrytowych. Taka 100% transformacja: a) zwiększa objętość komórek elementarnych o ok. +137,76%, b) jest egzotermiczna, c) podnosi ciśnienie, d) generuje naprężenia, e) wywołuje deformacje: ściskające wewnątrz i rozciągające na zewnątrz, f) prowadzi do wyniesień, g) skutkuje chaotycznymi wiekami K/Ar z rozbieżnościami rzędu milionów lat, h) może powodować sprzężone zagrożenia sejsmotektoniczne-wodne-H2S oraz pozorne osiadanie. Przekształcenia takie dają krytyczne implikacje dla ogólnego spojrzenia na siły tektoniczne i powstawanie złóż, dokumentowanie geologiczne i eksploatację, w szczególności w kontekście zagrożeń wodnych i stateczności podczas wydobycia oraz kwestii środowiskowych [osiadanie/deformacje, wstrząsy, reżim wodny/zanieczyszczenie/zasolenie, H₂S itd.]. Reakcje geochemiczne przyspieszone przez głębokie odwadnianie kopalni mogą prowadzić do szybkich [nawet dni/lata] geochemicznie niewielkich przejść objętościowych anhydryt → polihalit, które jednak skutkują zagrożeniami sejsmotektonicznymi, wodnymi i H₂S – zwłaszcza w systemach wydobywczych anhydryt-dolomit-halit. Odgrywają one kluczową rolę w kształtowaniu właściwości mechanicznych skał, ich deformacji i ruchów. Praca podkreśla potrzebę zintegrowanych analiz geochemicznych i strukturalnych, aby lepiej rozumieć te zjawiska i ograniczać związane z nimi ryzyka – od rozpoznania, przez eksploatację [ekonomia, bezpieczeństwo, zagrożenia wodno-solankowo-osiadaniowe], po geoinżynierię.
Mining exploitation of cement/concrete components experience sometimes problems caused by tectonic process and water hazards during mining of polyhalite-bearing sulphate rocks. Polyhalite is a hydrated K-Mg-Ca sulphate mineral of high economic significance, including construction materials industry. On the other hand, traditional tectonic analyses for seismic/water events prediction, often emphasize external forces and mining-induced stress relaxation. They rarely arise questions on primary origin such forces. Potential cumulation of stress, resulted from internal geochemical-mineralogical origin of such forces, of large-scale compression/tension and mass-movement are often neglected. A universal, approach here concerns the role of geochemical control of volume-temperature variations combined with post-sedimentary transformation of anhydrite to polyhalite what apparently implicates substantial problems during any mining carried out in anhydrite bodies. Such 100% transformation: a) increase volume of elemental cells by c.a. +137,76 %, b) is exothermic, c) elevates pressure d) results stress, e) implicates deformations: compressive inside and tensile outside, f) forms elevations, g) results chaotic K/Ar ages with millions of years discrepancies, h) may result sesimtectonic-water-H2S combined hazards and apparent subsidence. Such transformations have critical implications for general view in tectonic forces and formation of deposits, geological documentation and mining of them, particularly in addressing water, stability hazards during resource extraction and environmental issues [subsidence/deformations, earthquakes, water regime/pollution/salinisation, H2S etc]. The geochemical reactions, accelerated by deep-mine drainage activity, may result in fast [even days/years] geochemically negligible anhydrite-to-polyhalite volume-grow transitions, which however results in seismotectonic- water- and H2S-hazars, especially in anhydrite-dolomite-halite mining systems. They are pivotal in shaping mechanical properties of rocks and their deformations and movement. The study underscores the need for integrated geochemical and structural analyses to better understand these phenomena and mitigate associated risks from exploration to resource extraction [economy, safety, water-brine-subsidence environmental hazards] and geoengineering.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
144--159
Opis fizyczny
Bibliogr. 46 poz., il.
Twórcy
autor
- Laboratory of Isotope Geology and Geoecology, Department of Applied Geology, Geochemistry and Environmental Management, Institute of Geological Science, University of Wrocław, Wrocław, Poland
Bibliografia
- 1. M.O. Jędrysek, Geochemical and mineralogical causes of rock volume changes as a factor in the formation of stresses, elevation, and deformation: considerations based on the example of anhydrites and polyhalites in geological and mining aspects. In: Pikomole puzzles of the functioning of the Universe - A tribute to Stanislaw Halas and thirtieth anniversary of the Laboratory of Isotopic Geology and Geoecology, ed. M.O. Jędrysek, Acta Universitas Wratislaviensis 4238, (2024) [in Polish].
- 2. L.A. Hardie, On the Significance of Evaporites. Ann. Rev. Earth. Planet.Sci. 19, 131-168 (1991). 10.1146/annurev.ea.19.050191.001023
- 3. J.K. Warren, Evaporites: A Geological Compendium. Springer Cham Heildelberg New York London, Springer International Publishing Switzerland (2016). https://doi.org/10.1007/978-3-319-13512-0
- 4. J.K. Warren, Evaporites: Sediments, Resources and Hydrocarbons. Springer Berlin, Heidelberg, (2006). https://doi.org/10.1007/3-540-32344-9
- 5. J. García-Veigas, F. Ortí, L. Rosell, C. Ayora, J-M. Rouchy, S. Lugli, The Messinian salt of the Mediterranean: Geochemical study of the salt from the Central Sicily Basin and comparison with the Lorca Basin (Spain). Bull. Soc. Geol. France, 166(6), 699-710 (1995).
- 6. O. Braitsch, Salt Deposits, Their Origin and Composition. Springer Berlin, Heidelberg, (1971). https://doi.org/10.1007/978-3-642-65083-3
- 7. T.M. Peryt, C. Pierre, S.P. Gryniva, Origin of polyhalite deposits in the Zechstein (Upper Permian) Zdrada platform (northern Poland). Sedimentology, 45, 565-578 (1998). https://doi.org/10.1046/j.1365-3091.1998.00156.x
- 8. D. Freyer, W. Voigt, Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatsh. Chem. 134(5), 693-719 (2003). https://doi.org/10.1007/s00706-003-0590-3
- 9. A. Putnis, Mineral replacement reactions. Rev. Miner. Geoch. 70(1), 87-124 (2009). https://doi.org/10.2138/rmg.2009.70.3
- 10. R. Angel, M. Mazzucchelli, J. Gonzalez-Platas, M. Alvaro, A self-consistent approach to describe unit-cell-parameter and volume variations with pressure and temperature. J. Appl. Crystallogr. 54(6), 1621-1630 (2021). https://doi.org/10.1107/S1600576721009092
- 11. H.H. Teng, How ions and molecules organize to form crystals, Elements 9(3), 189-194 (2013). https://doi.org/10.2113/gselements.9.3.189
- 12. L.M. Henderson, F.C. Kracek The fractional precipitation of barium and radium chromates. J. Am. Chem. Soc. 49(3), 738-749 (1927). https://doi.org/10.1021/ja01402a017
- 13. K.N. Olafson, R. Li, B.G. Alamani, J.D. Rimer, Engineering Crystal Modifiers: Bridging Classical and Nonclassical Crystallization. Chem. Mater. 28(23), 8453-8465 (2016). https://doi.org/10.1021/acs.chemmater.6b03550
- 14. M. Prus, C. Li, K. Kędra-Królik, W. Piasecki, K. Lament, T. Begović, P. Zarzycki, Unseeded, spontaneous nucleation of spherulitic magnesium calcite. J. Colloid Interf. Sci. 593, 359-369 (2021). https://doi.org/10.1016/j.jcis.2021.03.002
- 15. S.D. Hovorka, Halite pseudomorphs after gypsum in bedded anhydrite - clue to gypsum±anhydrite relationships. J. Sedim. Petrol. 62(6), 1098-1111 (1992). https://doi.org/10.1306/D4267A5F-2B26-11D7-8648000102C1865D
- 16. Y. Ennaciri, H. Alaoui-Belghiti, M. Bettach, Comparative study of K2SO4 production by wet conversion from phosphogypsum and synthetic gypsum. J. Mat. Res. Tech. 8(3), 2586-2596 (2019). https://doi.org/10.1016/j.jmrt.2019.02.013
- 17. A.E.S. Van Driessche, L.G. Benning, J.D. Rodriguez-Blanco, M. Ossorio, P. Bots, J.M. García-Ruiz, The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336(6077), 69-72 (2012). https:/doi.org/10.1126/science.1215648.
- 18. A. Schorn, F. Neubauer, M. Bernroider, Polyhalite microfabrics in an Alpine evaporite mélange: Hallstatt, Eastern Alps. J. Struct. Geol. 46, 57-75 (2013). https://doi.org/10.1016/j.jsg.2012.10.006
- 19. E.S. Newman, L.S. Wells, Heats of hydration and transition of calcium sulfate. J. Res. Nat. Bur. Stand. 20(6), 825-836 (1938). https://nvlpubs.nist.gov/nistpubs/jres/20/jresv20n6p825_A1b.pdf
- 20. H.F.W. Taylor, Cement Chemistry. Academic Press, 1990.
- 21. D.K. Nordstrom, Improving Internal Consistency of Standard State Thermodynamic Data for Sulfate Ion, Portlandite, Gypsum, Barite, Celestine, and Associated Ions. Proc. Earth Planet. Sci. 7, 624-627, (2013). https://doi.org/10.1016/j.proeps.2013.03.140
- 22. D.A. Kulik, Improving the structural consistency of C-S-H solid solution thermodynamic models. Cem. Concr. Res. 41(5), 477-495 (2011). https://doi.org/10.1016/j.cemconres.2011.01.012
- 23. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751-767 (1976). https://doi.org/10.1107/S0567739476001551
- 24. Y. Marcus, Ionic Radii in Aqueous Solutions. Chemi. Rev. 88(8), 1475-1498 (1988). https://doi.org/10.1021/cr00090a003
- 25. R. Feistel, W. Wagner, A new equation of state for H2O ice. J. Phys. Chemi. Ref. Data 35(2), 1021-1047 (2006). https://doi.org/10.1063/1.2183324
- 26. Z. Li, G. Demopoulos, Effect of NaCl, MgCl2, FeCl2, FeCl3, and AlCl3on Solubility of CaSO4 Phases in Aqueous HCl or HCl + CaCl2 Solutions at 298 to 353 K. J. Chem. Eng. Data 51(2), 571-578 (2006). https://doi.org/10.1021/je0504055
- 27. Warren, J.K. Evaporites: Sediments, Resources and Hydrocarbons. Springer, (Berlin-Heidelberg-New York), (2006) pp. 1036, https://doi.org/10.1007/3-540-32344-9
- 28. T.K. Lowenstein, L.A. Hardie, M.N. Timofeeff, R.V. Demicco, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology 31(10), 857-860 (2003). https://doi.org/10.1130/G19728R.1
- 29. W.J. Shang, M-P. Zheng, Y-S. Zhang, Ji-A. Zhong, E-Y. Xing, Y. Peng, Ba-L Gui, and K. Li, Characteristics and origin of a new type of polyhalite deposit in the Sichuan Basin, China. J. Palaeogeogr. 10, 4 (2021). https://doi.org/10.1186/s42501-021-00083-3
- 30. A. Wójtowicz, S. Hryniv, Zastosowanie datowania metodą K/Ar polihalitów wschodniego Przedkarpacia w celu wyjaśnienia ich genezy. Prz. Geol. 49(12), 1176-1180 (2001). https://geojournals.pgi.gov.pl/pg/article/view/15081/12915
- 31. A-V. Bojar, S. Hałas., H.-P. Bojar, A. Trembaczowski, Multiple isotope tracers from Permian-Triassic hydrated sulfates: Implications for fluid-mineral interaction. BSGF - Earth Sci. Bull. 190(11), 1-9 (2019). https://doi.org/10.1051/bsgf/2019010
- 32. M. Słotwiński, S. Burliga, Controls on evaporite facies distribution during the early phases of the Zechstein Basin development (Zechstein 1, Upper Permian): Implications from the marginal part of the basin in SW Poland. Sedim. Geol. 453, 1-17 (2023). https://doi.org/10.1016/j.sedgeo.2023.106439
- 33. S. Hałas, A.-V. Bojar, T.M. Peryt, Oxygen isotopes in authigenic quartz from massive salt deposits. Chem. Geol. 402, 1-5 (2015). https://doi.org/10.1016/j.chemgeo.2015.02.034
- 34. H.R. Krouse, C.A. Viau, L.S. Eliuk, A. Ueda, S. Hałas, Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 333, 415-419 (1988). https://doi.org/10.1038/333415a0
- 35. R.H. Worden, P.C. Smalley, H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi. Chem. Geol. 133(1-4), 157-171 (1996). https://doi.org/10.1016/S0009-2541(96)00074-5
- 36. H.G. Machel, Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights. Sedim. Geol. 140(1-2), 143-175 (2001). https://doi.org/10.1016/S0037-0738(00)00176-7
- 37. M. Weber, Conductibilite calorifique des roches et des corps mauvais conducteurs. Sci. Phys. Natur. Arch. 23, 590-591 (1895). https://scispace.com/pdf/thermal-conductivities-of-rocks-xv76gswe73.pdf
- 38. C. Pauselli, G. Gola, G. Ranalli, P. Mancinelli, F. Trippetta, P. Ballirano, M. Verdoya, Thermal conductivity of Triassic evaporites. Geophys. J. Int. 227, 1715-1729 (2021). https://doi.org/10.1093/gji/ggab293
- 39. E.C. Robertson, Thermal properties of rocks. U.S. Geological Survey, Open-File Report 88-441, (1988), iv + 106 p. https://doi.org/10.3133/ofr88441.
- 40. J. Martínez-Martínez, A. Arizzi, D. Benavente, The Role of Calcite Dissolution and Halite Thermal Expansion as Secondary Salt Weathering Mechanisms of Calcite-Bearing Rocks in Marine Environments. Minerals 11(8), 1-15 (2021). https://doi.org/10.3390/min11080911
- 41. M. Adamuszek, M. Dąbrowski, Sinking of a fragmented anhydrite layer in rock salt. Tectonoph. 766, 40-59 (2019). https://doi.org/10.1016/j.tecto.2019.05.018
- 42. L. Richards, F. Jourdan, A.S. Collins, R.C. King, Deformation recorded in polyhalite from evaporite detachments revealed by 40Ar/39Ar dating. Geochron. 3, 545-559 (2021). https://doi.org/10.5194/gchron-3-545-2021
- 43. C. Leitner, F. Neubauer, J. Genser, S. Borojević-Šoštarić, G. Rantitsch, 40Ar/39Ar ages of crystallization and recrystallization of rock-forming polyhalite in Alpine rocksalt deposits. Geological Society, London, Special Publications 378, 207-224 (2014). https://doi.org/10.1144/SP378.5
- 44. J. Heeb, D. Healy, N.E. Timms, E. Gomez-Rivas, Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth’s crust and mantle. Solid Earth 14(9), 985-1003 (2023). https://doi.org/10.5194/se-14-985-2023
- 45. I.J. Reznik, I. Gavrieli, J. Ganor, Kinetics of gypsum nucleation and crystal growth from Dead Sea brine. Geochim. Cosmochim. Acta 73(20), 6218-6230 (2009). https://doi.org/10.1016/j.gca.2009.07.018
- 46. G. Wollmann, D. Freyer, W. Voigt, Polyhalite and its analogous triple salts. Monats. Chem. 139, 739-745 (2008). https://doi.org/10.1007/s00706-007-0835-7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0d411ca-dc10-492b-8aa3-119c0374eb93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.