PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shaping the parameters of cylindrical belt surface in the joint area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most of the industrial machines use round-shaped drive belts for power transfer. They are often a few millimetres in diameter, and made of thermoplastic elastomer, especially polyurethane. Their production process requires the bonding step, which is often performed by butt welding, using the hot plate method. The authors have undertaken to design an automatic welding machine for this purpose. Consequently, it is required to carry out a process analysis of hot plate welding, which entails describing the dependency between technological parameters (temperature, pressure force, time) and the quality of the joint, especially the outer surface of the belt around the weld. To analyse this process in a proper way, it is necessary to describe the physical phenomena that occur in the material, during particular operations of the hot plate welding process. One of the most troublesome phenomena occurring during the welding process is removing of the flash. These round rings, placed around the weld, which remains after the joining process, are unacceptable in the finished component. The authors took an effort to design the necessary equipment for removing of the flash after welding, using some simple parts that cut off excessive material. The paper shows the three possible solutions for flash removal. They were verified experimentally, and afterwards, the best solution was chosen. Additionally, a number of analytical calculations were carried out in order to determine the maximum force value required for this operation. Results of the analytical calculations were compared with experimental results.
Rocznik
Strony
255--261
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • * Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
  • * Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
  • * Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
Bibliografia
  • 1. Amanat N., James N. L., McKenzie D.R. (2010), Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices, Medical engineering & Physics, 32, 690–699.
  • 2. Amancio-Filho S.T., dos Santos J.F. (2009), Joining of Polymers and Polymer-Metal Hybrid Structures: Recent Developments and Trends, Polymer Engineering and Science, 49(8), 1461–1476.
  • 3. BASF (2010), Thermoplastic Polyurethane Elastomers, Elastollan® - Material Properties, BASF.
  • 4. Behabelt (2015), Product Catalogue 2015/2016, Behabelt, Glottertal.
  • 5. Broniewicz T., Iwasiewicz A., Kapko J., Płaczek W. (1970) Methods of researches and examination of plastics properties (in Polish), WNT, Warszawa.
  • 6. Casalino G., Ghorbel E. (2008), Numerical model of CO2 laser welding of thermoplastic polymers, Journal of Materials Processing Technology, 207, 63–71.
  • 7. Ciszewski A., Radomski T. (1989), Construction materials in machine design (in Polish), PWN, Warszawa.
  • 8. Cocard M., Grozav I., Iacob M., Caneparu A. (2009), Establishing the Optimum Welding Procedure for PE 100 Polyethylene Pipelines Using the Response Surface Design, Materiale Plastice, 46(4), 452–457.
  • 9. Domek G., Dudziak M. (2011), Energy Dissipation in Timing Belts Made From Composite Materials, Advanced Material Research, 189-193, 4414–4418.
  • 10. Domek G., Kołodziej A., Dudziak M., Woźniak T. (2016), Identification of the quality of timing belt pulleys, Procedia Engineering, 177, 275–280.
  • 11. Evers F., Schöppner V., Lakemeyer P. (2017), The influence on welding processes on the weld strength of flame-retardant materials, Weld World, 61, 161–170.
  • 12. Fierek A., Malujda I., Talaśka K. (2019), Design of a mechatronic unit for applications of coats of adhesive, MATEC Web of Conferences, 254, 01019.
  • 13. Górecki J., Malujda I., Wilczyński D. (2019), The influence of geometrical parameters of the forming channel on the boundary value of the axial force in the agglomeration process of dry ice, MATEC Web of Conferences, 254, 05001.
  • 14. Grewell D., Benatar A. (2007), Welding of plastics: fundamentals and new developments, International Polymer Processing, 22(1), 43–60.
  • 15. Groover M. P. (2015), Fundamentals of modern manufacturing, Willey, 503-510.
  • 16. Inoue T., Miyata R., Hirai S. (2016), Antagonistically Twisted Round Belt Actuator System for Robotic Joints, Journal of Robotics and Mechatronics, 28(6), 842–853.
  • 17. Jasiulek P. (2006), Joining of plastics by welding, glueing and laminating (in Pollish), Wydawnictwo "KaBe", Krosno.
  • 18. Klimpel A. (1999), Metals and thermoplastic polymers welding technology (in Polish), Wydawnictwo Politechniki Śląskiej, Gliwice.
  • 19. Klimpel A. (2000), Welding of thermoplastics materials (in Polish), Wydawnictwo Politechniki Śląskiej, Gliwice.
  • 20. Krawiec P., Grzelka M., Kroczak J., Domek G., Kołodziej A. (2019), A proposal of measurement methodology and assessment of manufacturing methods of nontypical cog belt pulleys, Measurement, 132, 182–190.
  • 21. Krawiec P., Waluś K., Warguła Ł., Adamiec J. (2018), Wear evaluation of elements of V-belt transmission with the application of the optical microscope, MATEC Web of Conferences, 157, 01009.
  • 22. Krishnan C., Benatar A. (2004), Analysis of Residual Stress in Hot Plate Welded Polycarbonate, ANTEC 2004 Proceedings: Plastics, 1149–1153.
  • 23. Kukla M., Tarkowski P., Górecki J., Malujda I., Talaśka K. (2015), The Effect of Magnetic Field on Magnetorheological Composites. Artificial Neural Network Based Modelling and Experiments, Applied Mechanics And Materials, 816, 327–336.
  • 24. Madej M., Ozimina D. (2010), Plastics and composite materials (in Polish), Wydawnictwo Politechniki Świętokrzyskiej, Kielce.
  • 25. Marciniak Z. (1959), Punching dies construction (in Polish), WNT, Warszawa, 299–302.
  • 26. Mokhtarzadeh A., Benatar A. (2012), Experiments with conventional and high temperature hot plate welding of thermoplastics using temperature and pressure control, ANTEC 2012 Proceedings: Plastics, 1684–1690.
  • 27. Nieh J., Lee J. (1992), Hot Plate Welding of Polypropylene Part I: Crystallization Kinetics, Polymer Engineering and Science, Vol. 38, 1121–1132.
  • 28. Osiński Z. (2007), Basics of machine design (in Polish), PWN, Warszawa, 157–163.
  • 29. Pietrzak M., Wałęsa K., Górecki J., Berdychowski M. (2019) Analysis of the friction (spin) welding – preliminary study, MATEC Web of Conferences, 254, 02036.
  • 30. Potente H., Schneiders J., Bornemann M. (2002), Theoretical model for the one-dimensional temperature and stress calculation of simple hot plate welded geometries, Macromolecular Materials and Engineering, 287, 843–853.
  • 31. Puszka A. (2006), Polyurethanes – sources, properties and modifications (in Polish), Zakład Chemii Polimerów, Wydział Chemii Uniwersytetu Marii Curie Skłodowskiej w Lublinie, Lublin.
  • 32. Rzasinski R. (2017), The algorithm of verification of welding process for plastic pipes, IOP Conference Series: Materials Science and Engineering, 227, 012113.
  • 33. Sikora R. (1993), Polymers processing (in Polish), Wydawnictwo ŻAK, Warszawa.
  • 34. Talaśka K,. Ferreira A. (2017), An Approach to Identifying Phenomena Accompanying Micro and Nanoparticles in Contact With Irregular Vessel Walls, Transactions on NanoBioscience, 16(6), 463–475.
  • 35. Talaśka K. (2018), Study of research and modelling of the loose and shredded materials compaction process (in Polish), Wydawnictwo Politechniki Poznańskiej, Poznań.
  • 36. Troughton M. (1997), Handbook of Plastics Joining: A practical guide, Plastics Design Library, New York.
  • 37. Wałęsa K., Malujda I., Talaśka K. (2018), Butt welding of round drive belts, Acta Mechanica et Automatica, 12(2), 115–126.
  • 38. Wałęsa K., Malujda M., Górecki J., Wilczyński D. (2019), The temperature distribution during heating in hot plate welding process, MATEC Web of Conferences, 254, 02033.
  • 39. Wałęsa K., Mysiukiewicz O., Pietrzak M., Górecki J., Wilczyński D. (2019), Preliminary research of the thermomechanical properties of the round drive belts, MATEC Web of Conferences, 254, 06007.
  • 40. Wanqing L., Changqing F., Xing Z., Youliang C., Rong Y., Donghong L. (2017), Morphology and thermal properties of polyurethane elastomer based on representative structural chain extenders, Thermochimica Acta, 653, 116–125.
  • 41. Wilczyński D., Malujda M., Górecki J., Domek G. (2019), Experimental research on the proces of cutting transport belts, MATEC Web of Conferences, 254, 05014.
  • 42. Wojtkowiak D., Talaśka K. (2019), Determination of the effective geometrical features of the piercing punch for polymer composite belts, The International Journal of Advanced Manufacturing Technology , https://doi.org/10.1007/s00170-019-03746-7.
  • 43. Wojtkowiak D., Talaśka K., Malujda I., Domek G. (2018), Estimation of the perforation force for polimer composite conveyor belts taking into consideration the shape of the piercing punch, The International Journal of Advanced Manufacturing Technology, 98(9-12), 2539–2561.
  • 44. Yousepour A., Hojjari M., Immarigeon J-P. (2004), Fusion Bonding/Welding of Thermoplastic Composites, Journal of Thermoplastic Composite Materials, 17, 303–341.
  • 45. Żuchowska D. (2000), Construction polymers (in Polish), WNT, Warszawa
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0d214c4-b368-44b1-859e-8e8bded61550
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.