Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The cost-effectiveness of reactive distillation (RD) processes makes them highly attractive for industrial applications. However, their preliminary design and subsequent scale-up and operation are challenging. Specifically, the response of RD system during fluctuations in process parameters is of paramount importance to ensure the stability of the whole process. As a result of carrying out simulations using Aspen Plus, it is shown that the RD process for isoamyl acetate production was much more economical than conventional reactor distillation configuration under optimized process conditions due to lower utilities consumption, higher conversion and smaller sizes of condenser and reboiler. Rigorous dynamic modeling of RD system was performed to evaluate its sensitivity to disturbances in critical process parameters; the product flow was quite sensitive to disturbances. Even more sensitive was product composition when the disturbance in heat duties of condenser or reboiler led to a temperature decrease. However, positive disturbance in alcohol feed is of particular concern, which clearly made the system unstable.
Czasopismo
Rocznik
Tom
Strony
59--66
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- King Faisal University, Department of Chemical Engineering, PO Box 380, Al-Ahsa 31982, Saudi Arabia
autor
- King Faisal University, Department of Chemical Engineering, PO Box 380, Al-Ahsa 31982, Saudi Arabia
autor
- King Saud University, Department of Chemical Engineering, PO Box 800, Riyadh 11421, Saudi Arabia
Bibliografia
- 1. Tuchlenski, A., Beckmann, A., Reusch, D., Düssel, R., Weidlich, U. & Janowsky, R. (2001). Reactive distillation - industrial applications, process design & amp; scale-up. Chem. Engine. Sci. 56(2), 387-394. DOI: 10.1016/S0009-2509(00)00240-2.
- 2. Luyben, W.L. & Yu, C.C. (2008). Reactive distillation design and control (1st ed.). Hoboken, New Jersey, United States: John Wiley & Sons.
- 3. Estrada-Villagrana, A.D., Quiroz-Sosa, G.B., Jiménez- Alarcón, M.L., Alemán-Vázquez, L.O. & Cano-Domínguez, J.L. (2006). Comparison between a conventional process and reactive distillation for naphtha hydrodesulfurization. Chem. Engine. Proces.: Process Intensif. 45(12), 1036-1040. DOI: 10.1016/j.cep.2006.03.019.
- 4. Patil, K.D. & Kulkarni, B.D. (2012). Mathematical modeling and simulation of reactive distillation column using matlab and aspen plus. Inter. J. Lat. Trends .Engine. Sci. Tech. 1(6), 1-8.
- 5. Sudibyo, Q., Murat, M.N. & Aziz, N. (2012). Simulation studies and sensitivity analysis of methyl tert-butyl ether reactive distillation. 11th International Symposium on Process Systems Engineering 31, 130-134. DOI: 10.1016/B978-0-444-59507-2.50018-4.
- 6. Sharma, N. & Singh, K. (2010). Control of reactive distillation column: A review. Inter. J. Chem. Reac. Engine. 8 R5. DOI: 10.2202/1542-6580.2260.
- 7. Harmsen, G.J. (2007). Reactive distillation: The frontrunner of industrial process intensifi cation: A full review of commercial applications, research, scale-up, design and operation. Chem. Engine. Proces.: Process Intensif. 46(9), 774-780. DOI: 10.1016/j.cep.2007.06.005.
- 8. Omota, F., Dimian, A.C. & Bliek, A. (2003). Fatty acid esterifi cation by reactive distillation. Part 1: Equilibrium-based design. Chem. Engine. Sci. 58(14), 3159-3174. DOI: 10.1016/ S0009-2509(03)00165-9.
- 9. Kiss, A.A. (2011). Heat-integrated reactive distillation process for synthesis of fatty esters. Fuel Proces. Technol. 92(7), 1288-1296. DOI: 10.1016/j.fuproc.2011.02.003.
- 10. Vargas, E.C., Hernandez, S., Hernandez, J.G.S. & Rodriguez, M.I.C. (2011). Simulation study of the production of biodiesel using feedstock mixtures of fatty acids in complex reactive distillation columns. Energy 36(11), 6289-6297. DOI: 10.1016/j.energy.2011.10.005.
- 11. Castro, F.I.G., Ramirez, V.R., Hernandez, J.G.S., Castro, S.H. & El-Halwagi, M.M. (2013). Simulation study on biodiesel production by reactive distillation with methanol at high pressure and temperature: Impact on costs and pollutant emissions. Comp. & Chem. Engine. 52, 204-215. DOI: 10.1016/j. compchemeng.2013.01.007.
- 12. Nguyen, N. & Demirel, Y. (2011). Using thermally coupled reactive distillation columns in biodiesel production. Energy 36(8), 4838-4847. DOI: 10.1016/j.energy.2011.05.020.
- 13. Guo, B. & Li, Y. (2012). Analysis and simulation of reactive distillation for gasoline alkylation desulfurization. Chem. Engine. Sci. 72, 115-125. DOI: 10.1016/j.ces.2012.01.016.
- 14. Hasabnis, A. & Mahajani, S. (2014). Acetalization of glycerol with formaldehyde by reactive distillation. Indust. & Engine. Chem. Res. 53(31), 12279-12287. DOI: 10.1021/ie501577q.
- 15. Bhatia, S., Mohamed, A.R., Ahmad, A.L. & Chin, S.Y. (2007). Production of isopropyl palmitate in a catalytic distillation column: Comparison between experimental and simulation studies. Comp. & Chem. Engine. 31(10), 1187-1198. DOI: 10.1016/j.compchemeng.2006.10.008.
- 16. Chandrakar, A., Agarwal, V., Chand, S. & Wasewar, K.L. (2007). Modeling and simulation of catalytic distillation column for esterifi cation of acetic acid with methanol. Inter. J. Chem. React. Engine. 5(1), 481. DOI: 10.2202/1542-6580.1404.
- 17. Sharma, M.M. & Mahajani, S.M. (2003). Industrial applications of reactive distillation. In Reactive distillation: Status and future directions (1-29). Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA.
- 18. Saha, B., Teo, H. & Alqahtani, A. (2005). Iso-amyl acetate synthesis by catalytic distillation. Inter. J. Chem. React. Engine. 3 A11. DOI: 10.2202/1542-6580.1250.
- 19. Patil, K.D. & Kulkarni, B.D. (2014). Kinetics studies on esterifi cation reaction of acetic acid with iso-amyl alcohol over ion exchange resin as catalysts. Inter. J. .Engine. Res. 3(8), 488-493.
- 20. Saha, B., Alqahtani, A. & Teo, H.T.R. (2005). Production of iso-amyl acetate: Heterogeneous kinetics and techno-feasibility evaluation for catalytic distillation. Inter. J. Chem. React. Engine. 3 A30. DOI: 10.2202/1542-6580.1231.
- 21. Luyben, W.L., Pszalgowski, K.M., Schaefer, M.R. & Siddons, C. (2004). Design and control of conventional and reactive distillation processes for the production of butyl acetate. Indust. & Engine. Chem. Res. 43(25), 8014-8025. DOI: 10.1021/ie040167r.
- 22. Lu, S., Lei, Z., Wu, J. & Yang, B. (2011). Dynamic control analysis for manufacturing ethanol fuel via reactive distillation. Chem. Engine. Proces.: Process Intensif. 50(11-12), 1128-1136. DOI: 10.1016/j.cep.2011.09.006.
- 23. Olanrewaju, M.J. & Al-Arfaj, M.A. (2005). Dynamic investigation of high-purity/high-conversion generic reactive distillation. Comp. Aid. Chem. Engine. 20, 811-816. DOI: 10.1016/S1570-7946(05)80257-3.
- 24. Santoso, H., Bao, J. & Lee Peter, L. (2009). Operability analysis of mtbe reactive distillation column using a process simulator. Chem. Prod. Proc. Model. 4(3), 6. DOI: 10.2202/1934-2659.1376.
- 25. Khaledi, R. & Young, B.R. (2005). Modeling and model predictive control of composition and conversion in an etbe reactive distillation column. Indust. & Engine. Chem. Res. 44(9), 3134-3145. DOI: 10.1021/ie049274b.
- 26. Elliott, J.R. & Lira, C.T. (2012). Introductory chemical engineering thermodynamics (2nd ed.). New Jersey, United States: Prentice Hall.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0d12380-385b-4fcb-ae95-28343f561765