PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the Effects of Heat Exchanger Location on Turbofan Engine Performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a numerical investigation of the impact of heat exchanger (HE) location on the performance of the geared turbofan engine (GTF). It discusses the development trend for aero engines, with a primary focus on the modification of the turbofan engine cycle by the addition of the heat exchanger. This paper presents the current state of research on heat exchangers and their application in aero engines. The paper focuses on the thermodynamic model of the GTF engine, with particular emphasis on its modification to study the impact of heat exchangers on engine performance. The assumptions and limitations of the model are also discussed. The study examines the effects of various locations of the heat exchanger in the GTF engine, as well as its efficiency and pressure drop, on the engine overall performance, as measured by thrust and specific fuel consumption (SFC). The study demonstrates that the use of HE has a positive effect on engine thrust, but it also leads to an increase in SFC. According to the results, the HE should be positioned in the core engine of the GTF to achieve maximum thrust. This is achieved when the HE core flow inlet is located at approximately half the pressure ratio of the high-pressure compressor (HPC). It was found that the cold side pressure losses of the HE have a significant impact on engine performance for high bypass ratio turbofan engines. The additional conclusion can be drawn that, when designing a heat exchanger, it is of the utmost importance to take care to minimize its impact on pressure losses in the external channel of the engine.
Twórcy
  • Department of Aerospace Engineering, Faculty of Mechanical Engineering and Aviation, University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Department of Aerospace Engineering, Faculty of Mechanical Engineering and Aviation, University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • MTU Aero Engines Polska, Tajęcina 108, 36-002 Tajęcina, Poland
Bibliografia
  • 1. Markowski, J., Pielecha, J. Selected issues in exhaust emissions from aviation engines. J. Merkisz (Ed.). Nova Science Publishers, Incorporated, 2014.
  • 2. Pawlak, M., Kuźniar, M. Determination of CO2 emissions for selected flight parameters of a business jet aircraft. Journal of KONES, 2019; 26(3): 155–163. https://doi.org/10.2478/kones-2019-0069.
  • 3. Lei, T., Min, Z., Gao, Q., Song, L., Zhang, X., Zhang, X. The Architecture Optimization and Energy Management Technology of Aircraft Power Systems: A Review and Future Trends. Energies 2022; 15(11): 4109. https://doi.org/10.3390/en15114109.
  • 4. Orkisz, M., Kuźniar, M. 3E-A new paradigm for the development of civil aviation. Combustion Engines 2020; 181(2): 3–10. https://doi.org/10.19206/CE-2020-201.
  • 5. Pawlak, M., Kuźniar, M. Performance and Emission of the Aircraft with Hybrid Propulsion During Take-Off Operation Cycle. Advances in Science and Technology Research Journal 2024; 18(1): 155–166. https://doi.org/10.12913/22998624/177254.
  • 6. Kuźniar, M., Pawlak, M., Orkisz, M. Comparison of Pollutants Emission for Hybrid Aircraft with Traditional and Multi-Propeller Distributed Propulsion. Sustainability 2022; 14(22): 15076. https://doi.org/10.3390/su14116488.
  • 7. Reitz, R.D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., Zhao, H. The future of the internal combustion engine. International Journal of Engine Research 2020; 21(1): 3–10. https://doi.org/10.1177/1468087419877990.
  • 8. Wasiak, A., Orynycz, O., Tucki, K., Świć, A. Hydrogen enriched hydrocarbons as new energy resources–as studied by means of computer simulations. Advances in Science and Technology Research Journal 2022; 16(5): 78–85. https://doi.org/10.12913/22998624/154001.
  • 9. Pawlak, M., Kuźniar, M. The Effects of the Use of Algae and Jatropha Biofuels on Aircraft Engine Exhaust Emissions in Cruise Phase. Sustainability 2022; 14(11): 6488. https://doi.org/10.3390/su14116488.
  • 10. Seyam, S., Dincer, I., Agelin-Chaab, M. Novel hybrid aircraft propulsion systems using hydrogen, methane, methanol, eth-anol and dimethyl ether as alternative fuels. Energy Conversion and Management 2021; 238: 114172. https://doi.org/10.1016/j.enconman.2021.114172.
  • 11. Przysowa, R., Gawron, B., Białecki, T., Łęgowik, A., Merkisz, J., Jasiński, R. Performance and emissions of a microturbine and turbofan powered by alternative fuels. Aerospace 2021; 8(2): 25. https://doi.org/10.3390/aerospace8020025.
  • 12. Jakubowski, R. Evaluation of performance properties of two combustor turbofan engine. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17(4): 575–581. https://doi.org/10.1016/j.ast.2018.03.005.
  • 13. Yin, F., Rao, A.G. A review of gas turbine engine with inter-stage turbine burner. Progress in Aerospace Sciences 2020; 121: 100695, https://doi.org/10.1016/j.paerosci.2020.100695.
  • 14. Yin, F., Rao, A.G. Performance analysis of an aero engine with inter-stage turbine burner. The Aeronautical Journal 2017; 121(1245): 1605–1626. https://doi.org/10.1017/aer.2017.93.
  • 15. Yin, F., Rao, A.G. A review of gas turbine engine with inter-stage turbine burner. Progress in Aerospace Sciences 2020; 121: 100695. https://doi.org/10.1016/j.paerosci.2020.100695.
  • 16. Lebre, J., Brójo, F. Performance of a Turbofan Engine with Intercooling and Regeneration. International Journal of Aero-space and Mechanical Engineering 2011; 5(6): 1034–1038.
  • 17. Andriani, R., Gamma, F., Ghezzi, U. Regeneration and Inter-cooling in Gas Turbine Engines for Propulsion Systems. In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit 2008; 4899. https://doi.org/10.2514/6.2008-4899.
  • 18. Wilfert, G., Kriegl, B., Scheugenpflug, H., Bernard, J., Ruiz, X., Eury, S. Clean-Validation of a High Efficient Low NOx Core, a GTF High Speed Turbine and an Integration of a Re-cuperator in an Enviromental Friendly Engine Concept. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit 2005; 4195. https://doi.org/10.2514/6.2005-4195.
  • 19. Kurzke, J. Fundamental differences between conventional and geared turbofans. In Turbo Expo: Power for Land, Sea, and Air 2019; 48821: 145–153. https://doi.org/10.1115/GT2009-59745.
  • 20. Sato, A., Imamura, M., Fujimura, T. Development of pw1100g-jm turbofan engine. IHI Engineering Review 2014; 47(1): 23–28.
  • 21. Kurzke, J., Halliwell, I. Propulsion and power: an exploration of gas turbine performance modeling. Cham, Switzerland: Springer international publishing 2018; 355. https://doi.org/10.1007/978-3-319-75979-1.
  • 22. Boggia, S., Rüd, K. Intercooled recuperated gas turbine engine concept. In 41st AIAA/ASME/SAE/ASEE Joint Pro-pulsion Conference Exhibit 2005; 4192. https://doi.org/10.2514/6.2005-4192.
  • 23. Xu, L., Grönstedt, T. Design and analysis of an intercooled turbofan engine. Journal of Engineering for Gas Turbines and Power 2010; 132(11). https://doi.org/10.1115/1.4000857.
  • 24. Rolt, A.M., Kyprianidis, K. Assessment of new aero engine core concepts and technologies. in the EU framework 6 NEWAC programme. In ICAS 2010 Congress Proceedings 2010; 408.
  • 25. Rolt, A., Baker, N.J., and Rolls-Royce plc. Intercooled Tur-bofan Engine Design and Technology Research. in the EU Framework 6 NEWAC Programme 2009.
  • 26. A’Barrow, C., Carrotte, J.F., Walker, A.D., Rolt, A.M. Aerodynamic performance of a coolant flow off-take down-stream of an OGV. In Turbo Expo: Power for Land, Sea, and Air 2011; 54679: 187–199. https://doi.org/10.1115/GT2011-45888.
  • 27. Kwan, P.W., Gillespie, D.R., Stieger, R.D., Rolt, A.M. Minimising loss in a heat exchanger installation for an intercooled turbofan engine. In Turbo Expo: Power for Land, Sea, and Air 2011; 54617: 189–200. https://doi.org/10.1115/GT2011-45814.
  • 28. Walker, A.D., Carrotte, J.F., Rolt, A.M. Duct aerodynamics for intercooled aero gas turbines: constraints, concepts and design methodology. In Turbo Expo: Power for Land, Sea, and Air 2009; 48883: 749–758. https://doi.org/10.1115/GT2009-59612.
  • 29. Walker, A.D., Regunath, G.S., Carrotte, J.F., Denman, P.A. Intercooled aero-gas-turbine duct aerodynamics: Core air delivery ducts. Journal of Propulsion and Power 2012; 28(6): 1188–1200. https://doi.org/10.2514/1.B34450.
  • 30. Missirlis, D., Yakinthos, K., Palikaras, A., Katheder, K., Goulas, A. Experimental and numerical investigation of the flow field through a heat exchanger for aero-engine applications. International Journal of Heat and Fluid Flow 2005; 26(3): 440–458. https://doi.org/10.1016/j.ijheatfluidflow.2004.10.003.
  • 31. Missirlis, D., Yakinthos, K., Storm, P., Goulas, A. modeling pressure drop of inclined flow through a heat exchanger for aero-engine applications. Int. J. Heat Fluid Flow 2007; 28: 512–515. https://doi.org/10.1016/j.ijheatfluidflow.2006.06.00.
  • 32. Misirlis, D., Vlahostergios, Z., Flouros, M., Salpingidou, C., Donnerhack, S., Goulas, A., Yakinthos, K. Optimization of heat exchangers for intercooled recuperated aero engines. Aerospace 2017; 4(1), 14. https://doi.org/10.3390/aerospace4010014.
  • 33. Zhao, B., Zhang, J., Lian, W. Numerical modeling of heat exchanger filled with octahedral lattice frame porous material. Aerospace 2022; 9(5): 238. https://doi.org/10.3390/aerospace9050238.
  • 34. Zohuri, B. Compact heat exchangers. Cham, Switzerland: Springer. 2022 https://doi.org/10.1007/978-3-319-29835-1.
  • 35. Li, H., Huang, H., Xu, G., Wen, J., Wu, H. Performance analysis of a novel compact air-air heat exchanger for aircraft gas turbine engine using LMTD method. Applied thermal engineering 2017; 116: 445–455. http://dx.doi.org/10.1016/j.applthermaleng.2017.01.003.
  • 36. Ng, H.S. Advanced Gas Turbine Concepts: Turbofan with Intercooling and Regeneration, Turbofan with Intercooling and Regenerat - Warning: TT: undefined function: 32 Han Shing Ng 2229791 - Studocu.
  • 37. Jakubowski, R. Modelowanie osiągów silników turbinowych w środowisku MATLAB z wykorzystaniem modeli bloków funkcjonalnych. TTS Technika Transportu Szynowego 2015; 12: 691–696.
  • 38. Guha, A. An efficient generic method for calculating the properties of combustion products. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2001; 215(3): 375–387. https://doi.org/10.1243/0957650011538596.
  • 39. Masci, R., Sciubba, E. A gas turbine cooled-stage expansion model for the simulation of blade cooling effects on cycle performance. International Journal of Turbomachinery, Propulsion and Power 2019; 4(4): 36. https://doi.org/10.3390/ijtpp4040036.
  • 40. Gronstedt, T. and Kyprianidis, K. Optimizing the Operation of the Intercooled Turbofan Engine. In ASME Turbo Expo 2010. https://doi.org/10.1115/GT2010-22519.
  • 41. Wendeker, M., Czyż Z. Analysis of the bearing nodes loads of turbine engine at an unmanned helicopter during a jump up and jump down maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18(1): 89–97. http://dx.doi.org/10.17531/ein.2016.1.12.
  • 42. Czyż, Z., Magryta, P. Analysis of the operating load of foil-air bearings in the gas generator of the turbine engine during the acceleration and deceleration maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18(4): 507–513. http://dx.doi.org/10.17531/ein.2016.4.5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0ce948e-9bbd-4a02-ba96-4946df647191
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.