Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work presents the results of optimising the material selection and printing parameters of the splitter using additive technologies. Its main goal was to minimise adhesion occurring on the finished model between the material and the epoxy resin. Design/methodology/approach As part of the research, a model of an epoxy resin distributor was prepared and then made using 3D printing technology. The distributor is made in 5 versions of a different thermoplastic material. After printing, the dividers were dipped in epoxy resin. Once the resin had cross-linked, the samples were cut using water-jet cutting. The quality of the resulting connection was assessed using microscopic observations. Findings The multi-criteria analysis performed on five plastics (HIPS, ABS, PET, TPU, HT-PLA) selected the ABS material which met the assumed criteria to the highest extent (94%). Based on the comparison of the time of printing one distributor using a 3D printer with the time of making it using a CNC machine, it was found that it takes much longer than when making it using a CNC machine. The cost of each proposed material used to produce the distributor using additive technology is lower than making the same element from polyethene using a CNC machine. Research limitations/implications Problems that arose during the project implementation were related to the availability of HT-PLA material and limited possibilities of cutting samples because most cutting techniques generate high temperatures that deform the samples, negatively affecting the ability to test them. Practical implications It can be assumed that changing the geometric features of the manifold obtained as a result of using the appropriate pattern, filling density and material with appropriate parameters has a beneficial effect on reducing the material used. Originality/value The main originality of the research is its possibility of practical application. It is important to answer the question of what thermoplastic material should be used to produce elements for processing epoxy resin. It can improve many industries, such as protective coatings, automotive or aviation.
Wydawca
Rocznik
Tom
Strony
111--117
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Department of Material Technologies, Faculty of Materials Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
- Material Innovations Laboratory, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Draexlmaier Engineering Poland Company, ul. Wincentego Pola 21, 44-100 Gliwice, Poland
autor
- Department of Material Technologies, Faculty of Materials Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
autor
- Department of Material Technologies, Faculty of Materials Engineering, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
- [1] F.E. Jabri, A. Ouballouch, L. Lasri, R. El Alaiji, A comprehensive review of polymer materials and selective laser sintering technology for 3D printing, Journal of Achievements in Materials and Manufacturing Engineering 118/1 (2023) 5-17. DOI: https://doi.org/10.5604/01.3001.0053.7286
- [2] E. Brancewicz-Steinmetz, R. Valverde Vergara, V.H. Buzalski, J. Sawicki, Study of the adhesion between TPU and PLA in multi-material 3D printing, Journal of Achievements in Materials and Manufacturing Engineering 115/2 (2022) 49-56. DOI: https://doi.org/10.5604/01.3001.0016.2672
- [3] I. Karakurt, L. Lin, 3D printing technologies: techniques, materials, and post-processing, Current Opinion in Chemical Engineering 28 (2020) 134-143. DOI: https://doi.org/10.1016/j.coche.2020.04.001
- [4] E. Brancewicz-Steinmetz, J. Sawicki, Post-processing in multi-material 3D printing, Journal of Achievements in Materials and Manufacturing Engineering 117/1 (2023) 5-14. DOI: https://doi.org/10.5604/01.3001.0053.5953
- [5] Y. Bozkurt, E. Karayel, 3D printing technology; methods, biomedical applications, future opportunities and trends, Journal of Materials Research and Technology 14 (2021) 1430-1450. DOI: https://doi.org/10.1016/j.jmrt.2021.07.050
- [6] K. Sośniak, D. Biela, D. Szalaty, M. Ścieszka, M. Polok-Rubiniec, A. Włodarczyk-Fligier, A. Kania, Study of selected properties of PLA used in 3D printing, Journal of Achievements in Materials and Manufacturing Engineering 116/2 (2023) 72-79. DOI: https://doi.org/10.5604/01.3001.0053.4035
- [7] N. Shahrubudin, T.C. Lee, R. Ramlan, An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing 35 (2019) 1286-1296. DOI: https://doi.org/10.1016/j.promfg.2019.06.089
- [8] U.A. Essien, S. Vaudreuil, In-situ metal matrix composites development for additive manufacturing: a perspective, Journal of Achievements in Materials and Manufacturing Engineering 111/2 (2022) 78-85. DOI: https://doi.org/10.5604/01.3001.0015.9997
- [9] M.R. Khosravani, T. Reinicke, On the environmental impacts of 3D printing technology, Applied Materials Today 20 (2020) 100689. DOI: https://doi.org/10.1016/j.apmt.2020.100689
- [10] S. Maślanka, J. Juszczyński, T. Kraszewski, W. Oleksy, Properties of polylactide, obtained from lactic acid in the process of lactic fermentation of lactose in whey post production (waste), Journal of Achievements in Materials and Manufacturing Engineering 90/2 (2018) 58-68. DOI: https://doi.org/10.5604/01.3001.0012.8384
- [11] U. Shaukat, E. Rossegger, S. Schlogl, A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization, Polymers 14/12 (2022) 2449. DOI: https://doi.org/10.3390/polym14122449
- [12] X. Bi, R. Huang, 3D printing of natural fiber and composites: A state-of-the-art review, Materials and Design 222 (2022) 111065. DOI: https://doi.org/10.1016/j.matdes.2022.111065
- [13] A. Krzyzak, E. Kosicka, R. Szczepaniak, Research into the Effect of Grain and the Content of Alundum on Tribological Properties and Selected Mechanical Properties of Polymer Composites, Materials 13/24 (2020) 5735. DOI: https://doi.org/10.3390/ma13245735
- [14] R. Szczepaniak, A. Komorek, P. Przybyłek, A. Krzyżak, M. Roskowicz, J. Godzimirski, E. Pinkiewicz, W. Jaszczak, E. Kosicka, Research into mechanical properties of an ablative composite on a polymer matrix base with aerogel particles, Composite Structures 280 (2022) 114855. DOI: https://doi.org/10.1016/j.compstruct.2021.114855
- [15] M. Eckrich, P.A. Arrabiyeh, A.M. Dlugaj, D. Placement defects in thermoset-impregnated rovings deposited along curved paths, Polmyer Composites 44/6 (2023) 3634-3645. DOI: https://doi.org/10.1002/pc.27350
- [16] E. Kosicka, A. Krzyzak, M. Dorobek, M. Borowiec, Prediction of Selected Mechanical Properties of Polymer Composites with Alumina Modifiers, Materials 15/3 (2022) 882. DOI: https://doi.org/10.3390/ma15030882
- [17] S. Sławski, A. Woźniak, P. Bazan, M. Mrówka, The Mechanical and Tribological Properties of Epoxy-Based Composites Filled with Manganese-Containing Waste, Materials 15/4 (2022) 1579. DOI: https://doi.org/10.3390/ma15041579
- [18] M. Mrowka, J. Lenża-Czempik, A. Dawicka, M. Skonieczna, Polyurethane-Based Nanocomposites for Regenerative Therapies of Cancer Skin Surgery with Low Inflammatory Potential to Healthy Fibroblasts and Keratinocytes In Vitro, ACS Omega 8/41 (2023) 37769-37780. DOI: https://doi.org/10.1021/acsomega.3c01663
- [19] M. Chomiak, Reuse of polyester-glass laminate waste in polymer composites, Journal of Achievements in Materials and Manufacturing Engineering 107/2 (2021) 49-58. DOI: https://doi.org/10.5604/01.3001.0015.3583
- [20] M. Mrówka, D. Franke, M. Oslejsek, M. Jureczko, Influence of Citrus Fruit Waste Filler on the Physical Properties of Silicone-Based Composites, Materials 16/19 (2023) 6569. DOI: https://doi.org/10.3390/ma16196569
- [21] J. Stabik, M. Chomiak, Influence of casting velocity on surface resistivity of epoxy-hard coal graded composites, Archives of Materials Science and Engineering 47/1 (2011) 48-56.
- [22] M. Jureczko, M. Mrówka, Multiobjective Optimization of Composite Wind Turbine Blade, Materials 15/13 (2022) 4649. DOI: https://doi.org/10.3390/ma15134649
- [23] E. Kosicka, M. Borowiec, M. Kowalczuk, A. Krzyzak, Dynamic Behavior of Aviation Polymer Composites at Various Weight Fractions of Physical Modifier, Materials 14/22 (2021) 6897. DOI: https://doi.org/10.3390/ma14226897
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0cdf0e5-498f-47fd-adc8-6f976ed09700
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.