PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PALS investigations of matrix Vycor glass doped with molecules of luminescent dye and silver nanoparticles. Discrepancies from the ETE model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Polish Seminar on Positron Annihilation (42 nd ; 29.06-01.07.2016 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
A thermal stability of three materials: undoped reference Vycor glass, glass filled with ROT-305 red dye, and silver nanoparticles was investigated by positron annihilation lifetime spectroscopy (PALS) in a broad temperature range (from 93 to 473 K). The attempt of pore size calculations from the ortho-positronium lifetime data was performed using the extended Tao-Eldrup (ETE) model. Below room temperature, a significant decrease in lifetime values of the longest-lived component was found for all the samples. This effect could not be explained by thermal shrinkage of the material and is probably caused by interaction of -Ps with a Vycor glass matrix. The greatest discrepancy from the ETE model predictions was observed for the reference glass. Doping the base material with dye molecules and silver nanoparticles resulted in similar small decrease in this discrepancy. After reheating the samples to the room temperature, the PALS components returned to the initial values. In the temperature range of 293–473 K, quite good agreement between PALS results and the ETE model predictions was observed for the reference glass and the glass incorporated with dye molecules. The observed small discrepancy in this range could possibly be partly explained by thermal expansion of the material. For the glass doped with silver nanoparticles, a significant change in PALS parameters was observed in the temperature range from 403 to 473 K.
Czasopismo
Rocznik
Strony
717--720
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-030 Lublin, Poland, Tel.: +48 81 537 6123, Fax: +48 81 537 6191
autor
  • Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-030 Lublin, Poland, Tel.: +48 81 537 6123, Fax: +48 81 537 6191
autor
  • Chemistry Institute, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
Bibliografia
  • 1. Edelenbosch, O. Y., Fisher, M., Patrignani, L., Sark, W. G. J. H. M., & van Chatten, A. J. (2013). Luminescent solar concentrators with fi ber geometry. Opt. Express, 21(9), A503–A514. DOI: 10.1364/OE.21.00A503.
  • 2. Mosca, M., Caruso, F., Zambito, L., Seminara, B., Macaluso, R., Cali, C., & Feltin, E. (2013). Warm white LED light by frequency down-conversion of mixed yellow and Red lumogen. Integrated Photonics: Materials, Devices and Applications II, 8767, 0L1-10.DOI: 10.1117/12.2017274.
  • 3. Reisfeld, R., Levchenko, V., Saraidarov, T., Rysiakiewicz-Pasek, E., Baranowski, M., Podhorodecki, A.,Misiewicz, J., & Antropova, T. V. (2012). Steady state and femtosecond spectroscopy of Perylimide Red dye in porous and sol-gel glasses. Chem. Phys. Lett., 546, 171–175. DOI: 10.1016/j.cplett.2012.07.073.
  • 4. Zaleski, R., Goworek, J., Borówka, A., Kierys, A., & Wiśniewski, M. (2009). Positron porosimetry study of mechanical stability of ordered mesoporous materials. In N. Seaton, F. R. Reinoso, P. Llewellyn, & S. Kaskel (Eds.), Characterisation of porous solids VIII (pp. 400–407). Cambridge: RSC Publishing. DOI: 10.1039/9781847559418-00400.
  • 5. Fischer, C. G., Weber, M. H., Wang, C. L., McNeil, S. P., & Lynn, K. (2005). Positronium in low temperature mesoporous fi lms. Phys. Rev. B, 71(18), 180102. DOI: 10.1103/PhysRevB.71.180102.
  • 6. Śniegocka, M., Jasińska, B., Zaleski, R., & Goworek, T. (2006). Temperature dependence of o-Ps lifetime in some porous media. Deviation from ETE model. Chem. Phys. Lett., 430, 351–354. DOI: 10.1016/j.cplett.2006.09.001.
  • 7. Thraenert, S., Hassan, E. M., Enke, D., Fuerst, D., & Krause-Rehberg, R. (2007). Verifying the RTE model: ortho-positronium lifetime measurement on controlled pore glasses. Phys. Status Solidi C, 4(10), 3819–3822. DOI: 10.1002/pssc.200675738.
  • 8. Kullman, J., Enke, D., Thraenert, S., Krause-Rehberg, R., & Beiner, M. (2012). Characterization of pore filling of mesoporous host systems by means of positronium annihilation lifetime spectroscopy (PALS). Opt. Appl., XLII(2), 281–286. DOI: 10.5277/oa120205.
  • 9. Ciesielski, K., Dawidowicz, A. L., Goworek, T., Jasińska, B., & Wawryszczuk, J. (1998). Positronium lifetimes in porous Vycor glass. Chem. Phys. Lett., 289(1/2), 41–45. DOI: 10.1016/S0009-2614(98)00416-3.
  • 10. Vasilevskaya, T. N., & Antropova, T. V. (2009). Small angle X-ray scattering study of the structure of glassy nanoporous matrices. Phys. Solid State, 51(12), 2537–2545. DOI: 10.1134/S1063783409120178.
  • 11. Reisfeld, R., Jasinska, B., Levchenko, V., Gorgol, M., Saraidarov, T., Popov, I., Antropova, T. V., & Rysiakiewicz-Pasek, E. (2015). Porous glasses as a host of luminescent materials, their applications and site selective determination. J. Lumines. (in press). DOI: 10.1016/j.jlumin.2015.02.022.
  • 12. Saraidarov, T., Levchenko, V., & Reisfeld, R. (2010). Synthesis of silver nanoparticles and their stabilization in different sol-gel matrices: Optical and structural characterization. Phys. Status Solidi C, 7(11/12), 2648–2651. DOI: 10.1002/pssc.200983784.
  • 13. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res., Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374(2), 235–244. DOI:10.1016/0168-9002(96)00075-7.
  • 14. Shukla, A., Peter, M., & Hoffmann, L. (1993). Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 335, 310–317. DOI: 10.1016/0168-9002(93)90286-Q.
  • 15. Kullman, J., Enke, D., Thraenert, S., Krause-Rehberg, R., & Inayat, A. (2010). Characterization of nanoporous monoliths using nitrogen adsorption and positronium annihilation lifetime spectroscopy. Colloid Surf. A-Physicochem. Eng. Asp., 357, 17–20. DOI: 10.1016/j.colsurfa.2009.09.030.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0c48349-d904-43bd-bd59-323e4b9a3e75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.