PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bandwidth enhancement for QMSIW antenna by using dual cavity and triangle slot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The miniaturization of substrate-integrated waveguide (SIW) antenna suffers from the narrow impedance bandwidth. It occurs on the quarter mode substrate integrated waveguide (QMSIW) antenna that has 75% miniaturization of the full mode SIW. This research proposed the bandwidth enhancement for QMSIW antenna by using dual cavity and triangle slot. The QMSIW antenna feeds in a single port. The impedance bandwidth simulation has an 8.6% fractional bandwidth improved with dual resonant frequencies. The simulation result was validated with the measured impedance bandwidth.
Twórcy
  • Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
  • Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
  • Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
  • Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
  • Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
  • Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
autor
  • Syah Alam is Department of Electrical Engineering, Faculty of Engineering, Universitas Trisakti, Indonesia
  • Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
Bibliografia
  • [1] T. Djerafi, K. Wu, and A. Doghri, “Substrate Integrated Waveguide Antennas,” Handbook of Antenna Technologies, 2015. [Online]. Available: https://www.researchgate.net/publication/304195642.
  • [2] F. Furqan, S. Attamimi, A. Adriansyah, and M. Alaydrus, “Bandpass filter based on complementary split ring resonators at X-Band,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 1, pp. 243-248, 2019.
  • [3] S. Sepryanto, S. Attamimi, and F. Sirait, “Perancangan Antena Mikrostrip SIW Cavity-Backed Modified Dumbell-Shaped Slot Untuk Pengaplikasian Pada 5G,” J. Teknol. Elektro, vol. 11, no. 2, pp. 115-119, 2020.
  • [4] M. Bozzi, L. Perregrini, K. Wu, and P. Arcioni, “Current and Future Research Trends in Substrate Integrated Waveguide Technology,” Radioengineering, vol. 18, no. 2, pp. 201-209, 2009.
  • [5] S. A. Razavi and M. H. Neshati, “Development of a Low-Profile Circularly Polarized Cavity-Backed Antenna Using HMSIW Technique,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1041-1047, 2013. https://doi.org/10.1109/TAP.2012.2227104.
  • [6] D. Chaturvedi and S. Raghavan, “A Half-Mode SIW Cavity-Backed Semi-Hexagonal Slot Antenna for WBAN Application,” IETE J. Res., pp. 1-7, Apr. 2018. http://doi.org/10.1080/03772063.2018.1452644.
  • [7] D. W. Astuti and E. T. Rahardjo, “Size Reduction of Cavity Backed Slot Antenna using Half Mode Substrate Integrated Waveguide Structure,” 4th Int. Conf. Nano Electron. Res. Educ. Towar. Adv. Imaging Sci. Creat. ICNERE 2018, pp. 1-4, 2018. https://doi.org/10.1109/ICNERE.2018.8642564.
  • [8] S. Agneessens, S. Lemey, T. Vervust, and H. Rogier, “Wearable, Small, and Robust: The Circular Quarter-Mode Textile Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1482-1485, 2015. https://doi.org/10.1109/LAWP.2015.2389630.
  • [9] D. Chaturvedi and S. Raghavan, “Circular Quarter-Mode SIW Antenna for WBAN Application,” IETE J. Res., vol. 64, no. 4, pp. 482-488, 2017.
  • [10] B. J. Niu and J. H. Tan, “Compact Self-Isolated MIMO Antenna System Based on Quarter-Mode SIW Cavity,” Electron. Lett., vol. 55, no. 10, pp. 574-576, 2019.
  • [11] S. Sam and S. Lim, “Electrically small eighth-mode substrate-integrated waveguide (EMSIW) antenna with different resonant frequencies depending on rotation of complementary split ring resonator,” IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 4933-4939, 2013. https://doi.org/10.1109/TAP.2013.2272676.
  • [12] S. K. Thapa, C. Baichuan, A. Barakat, and R. K. Pokharel, “Experimental Study on the Effect of Feeding Topology of 60 GHz Sixteenth Mode SIW Cavity Resonator in CMOS Technology,” Asia-Pacific Microw. Conf. Proceedings, APMC, vol. 2022-Novem, pp. 384-386, 2022. https://doi.org/10.23919/APMC55665.2022.9999830.
  • [13] S. K. Thapa, R. K. Pokharel, B. Chen, T. Fukuda, and A. Barakat, “Millimeter-Wave High Q-factor Sixteenth Mode SIW Cavity Resonator Implemented in 0.18-μm CMOS Technology,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 2022-June, pp. 560-563, 2022. https://doi.org/10.1109/IMS37962.2022.9865522.
  • [14] F. Z. Siabah, F. Grine, M. T. Benhabiles, and M. L. Riab, “Sixteenth-Mode Substrate-Integrated-Waveguide (SMSIW) Resonator for Dielectric Characterization of Liquid Mixtures,” J. Microwaves, Optoelectron. Electromagn. Appl., vol. 19, no. 1, pp. 129-136, 2020. https://doi.org/10.1590/2179-10742020v19i11805.
  • [15] S. Choudhury and A. Mohan, “Electrically small 64th-mode substrateintegrated waveguide monopole antenna,” Electron. Lett., vol. 52, no. 8, pp. 580-581, 2016. https://doi.org/10.1049/el.2016.0198.
  • [16] H. Dashti and M. H. Neshati, “Development of low-profile patch and semi-circular SIW cavity hybrid antennas,” IEEE Trans. Antennas Propag., vol. 62, no. 9, pp. 4481-4488, 2014. http://doi.org/10.1109/TAP.2014.2334708.
  • [17] S. Agneessens, “Coupled Eighth-Mode Substrate Integrated Waveguide Antenna: Small and Wideband With High-Body Antenna Isolation,” IEEE Access, vol. 6, pp. 1595-1602, 2018. https://doi.org/10.1109/ACCESS.2017.2779563.
  • [18] G. Q. Luo, Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, and J. F. Zheng, “Bandwidth-Enhanced Low-Profile Cavity-Backed Slot Antenna by Using Hybrid SIW Cavity Modes,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1698-1704, 2012. https://doi.org/10.1109/TAP.2012.2186226.
  • [19] D. Chaturvedi, A. Kumar, and S. Raghavan, “Wideband HMSIW-Based Slotted Antenna for Wireless Fidelity Application,” IET Microwaves, Antennas Propag., vol. 13, no. 2, pp. 258-262, 2019. https://doi.org/10.1049/iet-map.2018.5110.
  • [20] B. J. Niu and J. H. Tan, “Compact SIW cavity MIMO antenna with enhanced bandwidth and high isolation,” Electron. Lett., vol. 55, no. 11, pp. 631-632, 2019. https://doi.org/10.1049/el.2019.0838.
  • [21] D. W. Astuti, M. Asvial, F. Y. Zulkifli, and E. T. Rahardjo, “Bandwidth Enhancement on Half-Mode Substrate Integrated Waveguide Antenna Using Cavity-Backed Triangular Slot,” Int. J. Antennas Propag., vol. 2020, 2020.
  • [22] Q. Wu, H. Wang, C. Yu, and W. Hong, “Low-Profile Circularly Polarized Cavity-Backed Antennas Using SIW Techniques,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2832-2839, 2016. https://doi.org/10.1109/TAP.2016.2560940.
  • [23] D. W. Astuti, Y. Wahyu, F. Y. Zulkifli, and E. T. Rahardjo, “Hybrid HMSIW Cavity Antenna with a Half Pentagon Ring Slot for Bandwidth Enhancement,” IEEE Access, vol. 11, no. February, pp. 18417-18426, 2023. https://doi.org/10.1109/ACCESS.2023.3247604.
  • [24] C. Jin, R. Li, A. Alphones, and X. Bao, “Quarter-Mode Substrate Integrated Waveguide and Its Application to Antennas Design,” IEEE Trans. Antennas Propag., vol. 61, no. 6, pp. 2921-2928, 2013. https://doi.org/10.1109/TAP.2013.2250238.
  • [25] D. M. Pozar, Microwave engineering, 4th ed. John Wiley & Son, Inc, 2012.
  • [26] F. Xu and K. Wu, “Guided-Wave and Leakage Characteristics of Substrate Integrated Waveguide,” IEEE Trans. Microw. Theory Tech, vol. 53, no. 5, pp. 66-73, 2005. https://doi.org/10.1109/TMTT.2004.839303.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0bd3250-26fe-4fea-b270-fc971c08e6b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.