PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hole transport in organic field-effect transistors with active poly(3-hexylthiophene) layer containing CdSe quantum dots

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid field-effect transistors (FETs) based on poly(3-hexylthiophene) (P3HT) containing CdSe quantum dots (QDs) were fabricated. The effect of the concentration of QDs on charge transport in the hybrid material was studied. The influence of the QDs capping ligand on charge transport parameters was investigated by replacing the conventional trioctylphosphine oxide (TOPO) surfactant with pyridine to provide closer contact between the organic and inorganic components. Electrical parameters of FETs with an active layer made of P3HT:CdSe QDs blend were determined, showing field-effect hole mobilities up to 1.1×104 cm2 /Vs. Incorporation of TOPO covered CdSe QDs decreased the charge carrier mobility while the pyridine covered CdSe QDs did not alter this transport parameter significantly.
Wydawca
Rocznik
Strony
288--297
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Physical and Theoretical Chemistry, Chemistry Department, Wroclaw University of Technology
  • Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
autor
  • Institute of Physical and Theoretical Chemistry, Chemistry Department, Wroclaw University of Technology
  • Institute of Physics, National Academy of Science of Ukraine, prospekt Nauky 46, 03680 Kyiv, Ukraine
autor
  • Institute of Physical and Theoretical Chemistry, Chemistry Department, Wroclaw University of Technology
autor
  • Institute of Physical and Theoretical Chemistry, Chemistry Department, Wroclaw University of Technology
  • Institute of Physical and Theoretical Chemistry, Chemistry Department, Wroclaw University of Technology
autor
  • Institute of Physical and Theoretical Chemistry, Chemistry Department, Wroclaw University of Technology
autor
  • Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
Bibliografia
  • [1] BRAGA D., HOROWITZ G., Adv. Mater. 21/14-15 (2009), 1473.
  • [2] WEN Y.G., LIU Y.Q., GUO Y.L., YU G., HU W.P., Chem. Rev. 111/5 (2011), 3358.
  • [3] ORTIZ R.P., FACCHETTI A., MARKS T.J., Chem. Rev. 110/1 (2010) 205.
  • [4] SALLEO A., Mater. Today 10/3 (2007) 38.
  • [5] KRUSZYNSKA M., KNIPPER M., KOLNY-OLESIAK J., BORCHERT H., PARISI J., Thin Solid Films 519/21 (2011) 7374.
  • [6] FARVA U., PARK C., Sol. Energy Mater. Sol. Cells 94/2 (2010) 303.
  • [7] SHARMA S.N., KUMAR U., SINGH V.N., MEHTA B.R., KAKKAR R.,Thin Solid Films 519/3 (2010) 1202.
  • [8] ALDAKOV D., CHANDEZON F., DE BETTIGNIES R., FIRON M., REISS P., PRON A., Eur. Phys. J.-Appl. Phys 36/3 (2006) 261.
  • [9] CHOI H.J., YANG J.K., PARK H.H., Thin Solid Films 494/1-2 (2006) 207.
  • [10] LIU I.S. et al., J. Mater. Chem. 18/6 (2008) 675.
  • [11] SEO J., KIM W.J., KIM S.J., LEE K.S., CARTWRIGHT A.N., PRASAD P.N., Appl. Phys. Lett. 94/13 (2009) 133302.
  • [12] LI Q.W., SUN B.Q., KINLOCH I.A., ZHI D., SIRRINGHAUS H., WINDLE A.H., Chem. Mat. 18/1 (2006) 164.
  • [13] MILLIRON D.J., ALIVISATOS A.P., PITOIS C., EDDER C., FRECHET J.M.J., Adv. Mater. 15/1 (2003) 58.
  • [14] HEINEMANN M.D. et al., Adv. Funct. Mater. 19/23 (2009) 3788.
  • [15] CHOI S.H. et al., J. Photochem. Photobiol. A-Chem. 179/1-2 (2006) 135.
  • [16] CHOI H.J., YANG J.K., YOON S., PARK H.H., Appl. Surf. Sci. 244/1-4 (2005) 92.
  • [17] XU J. et al., J. Am. Chem. Soc. 129/42 (2007) 12828.
  • [18] CHOUDHURY K.R., SAMOC M., PATRA A., PRASAD P.N., J. Phys. Chem. B 108/5 (2004) 1556.
  • [19] NISHIOKA M., CHEN Y., GOLDMAN A.M., Appl. Phys. Lett. 92/15 (2008) 153308.
  • [20] TOPP K. et al., J. Phys. Chem. A 114/11 (2010) 3981.
  • [21] XU Z.X., ROY V.A.L., STALLINGA P. , MUCCINI M., TOFFANIN S., XIANG H.F., CHE C.M., Appl. Phys. Lett. 90/22 (2007) 223509.
  • [22] REMASHAN K., CHOI Y.S., PARK S.J., JANG J.H., J. Electrochem. Soc. 157/12 (2010) II1121.
  • [23] REMASHAN K., CHOI Y.S., PARK S.J., JANG J.H., Jpn. J. Appl. Phys. 50/4 (2011) 04DJ08.
  • [24] CHIU M.Y., CHEN C.C., SHEU J.T., WEI K.H., Org. Electron. 10/5 (2009) 769.
  • [25] NYK M., PALEWSKA K., KEPINSKI L., WILK K.A., STREK W., SAMOC M., J. Lumines. 130/12 (2010) 2487.
  • [26] BIELECKA U., LUTSYK P., JANUS K., SWORAKOWSKI J., BARTKOWIAK W., Org. Electron. 12/11 (2011) 1768.
  • [27] SZE S., NG K. (Eds.), Physics of Semiconductor Devices, Wiley & Sons Ltd., New York, 1997.
  • [28] STALLINGA P. (Ed.), Electrical Characterization of Organic Electronic Materials and Devices, John Wiley & Sons Ltd., Chichester, UK, 2009.
  • [29] XU W.T., RHEE S.W., J. Mater. Chem. 19/29 (2009) 5250.
  • [30] NG K. (Ed.), Compliete guide to semiconductor devices, John Wiley & Sons Ltd., New York, 2002.
  • [31] SCHEINERT S., PAASCH G., SCHRODNER M., ROTH H.K., SENSFUSS S., DOLL T., J. Appl. Phys. 92/1 (2002) 330.
  • [32] ARKHIPOV V.I., HEREMANS P., EMELIANOVA E.V., BASSLER H. , Phys. Rev. B 71/4 (2005) 045214.
  • [33] CHEN C.C., CHIU M.Y., SHEU J.T., WEI K.H., Appl. Phys. Lett. 92/14 (2008) 143105.
  • [34] HUYNH W.U., DITTMER J.J., LIBBY W.C., WHITING G.L., ALIVISATOS A.P., Adv. Funct. Mater. 13/1 (2003) 73.
  • [35] LEE H.J. et al., J. Phys. Chem. C 112/30 (2008) 11600.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0b464e2-c047-4b4e-8562-b7a60a494f1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.