PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bird Collision Prevention Systems in Passenger Aviation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Systemy przeciwdziałające kolizji z ptakami w lotnictwie pasażerskim
Języki publikacji
EN
Abstrakty
EN
The purpose of this article is to present the results of a preliminary analysis of modern methods for preventing collisions between birds and aircraft. The focus was in particular on methods that enable defining the level of threat in passenger aviation and existing solutions for eliminating these threats. The first section defines the level of the existing threat of collision with birds for civil aviation on the basis of collision statistics based on collision reports submitted by pilots. The second chapter describes normative documents on methods intended to reduce the risk of collisions with birds, such as aviation rules and regulations, passenger aircraft certification, bird detection and deterrence systems, procedures of flight crews and air traffic controllers, and the development of bird detection and deterrence methods. Based on the analysis of existing solutions, the third chapter proposes a block diagram of an on-board system reducing the risk of aircraft collisions with birds by determining the level of collision risk and transmitting information about the risk level to the flight crew in order to reduce the effect of surprise among pilots, improve the accuracy of the statistics and operational safety by carrying out a technical inspection of the aircraft after the collision. The final chapter contains conclusions.
PL
Celem niniejszego artykułu jest przedstawienie wyników wstępnej analizy współczesnych metod przeciwdziałania kolizji statku powietrznego z ptakami. W szczególności skoncentrowano się na metodach, które umożliwiają zdefiniowanie poziomu zagrożenia w lotnictwie pasażerskim oraz istniejących rozwiązaniach eliminacji tych zagrożeń. W pierwszej części zdefiniowano poziom istniejącego zagrożenia kolizji z ptakami dla lotnictwa cywilnego na podstawie statystyk kolizji określonych na podstawie raportów składanych przez pilotów o zaistniałej kolizji. W drugim rozdziale opisano dokumenty normatywne traktujące o metodach umożliwiających ograniczenie ryzyka kolizji z ptakami takie jak zasady i przepisy lotnicze, certyfikacja samolotu pasażerskiego, systemy detekcji i odstraszania ptaków, procedury załóg i kontrolerów lotniczych oraz rozwój metod detekcji i odstraszania ptaków. W trzecim rozdziale na podstawie przeprowadzonej analizy istniejących rozwiązań zaproponowano schemat blokowy systemu pokładowego redukującego zagrożenie kolizji statku powietrznego z ptakami poprzez określenie poziomu zagrożenia kolizji oraz przekazanie informacji o stopniu zagrożenia do załogi lotniczej, w celu zredukowania efektu zaskoczenia u pilotów, poprawienia dokładności statystyk oraz bezpieczeństwa operacji poprzez wykonanie przeglądu technicznego samolotu po kolizji. Ostatni rozdział zawiera wnioski.
Słowa kluczowe
Twórcy
  • Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • [1] International Civil Aviation Organization. 1989. Manual On the ICAO Bird Strike Information System (Doc 9332).
  • [2] https://www.skybrary.aero/articles/bird-population-trends-and-impact-aviation-safety/(2022)
  • [3] International Civil Aviation Organization. 2017. 2008 - 2015 Wildlife Strike Analyses (IBIS).
  • [4] International Civil Aviation Organization. 2018. Annex 15 Aeronautical Information Services.
  • [5] International Civil Aviation Organization. 2020. Airport Services Manual (Doc 9137) - Wildlife Hazard Management.
  • [6] International Civil Aviation Organization. 2002. Airport Planning Manual (Doc 9184) - Land Use and Environmental Control.
  • [7] International Civil Aviation Organization. 2018. Annex 11 Air Traffic Services.
  • [8] Hamed, Dawid Musa. 2022. Bird Strikes Hazards (2022-05-02), https://icao/int/MID/Documents/2018/WHMCDecember/21%0Bird%20strikes%20hazard.pdf
  • [9] Matyjasiak, Piotr. 2008. Methods of bird control at airports. In Theoretical and applied aspects of modern ecology. Poland, Warsaw: Cardinal Stefan Wyszyński University pp. 171-203.
  • [10] https://www.skybrary.aero/articles/aircraft-certification-bird-strike-risk/(2022)
  • [11] Federal Aviation Administration. 2014. 14 CFR Part 33 – Airworthiness Standards: Aircraft Engines.
  • [12] European Aviation Safety Agency. 2017. EASA Airworthiness Code CS-E 800 Bird Strike and Ingestion.
  • [13] European Aviation Safety Agency. 2009. Bird population trends and their impact on Aviation safety 1999- 2008.
  • [14] Federal Aviation Administration. 2011. Bird Harassment, Repellent, and Deterrent Techniques for Use on and Near Airports.
  • [15] Washburn, E. Brian. Richard B. Chipman, and Laura C. Francoeur. 2006. “Evaluation of Bird Response to Propane Exploders in an Airport Environment”. USDA National Wildlife Research Center - Staff Publications. 1904.
  • [16] Bradley, F. Blackwell, Glen E. Bernhardt, Jon D. Cepek, and Richard A. Dolbeer. 2002. Lasers as non-lethal avian repellents: potential applications in the airport environment. USA: Department of Agriculture.
  • [17] https://www.birdcontrolgroup.com/effective-bird-dispersal-at-southampton-airport/(2022).
  • [18] Clark, Larry, and Michael L. Avery. 2013. Effectiveness of chemical repellents in managing birds at airports. In Wildlife in Airport Environments: Preventing Animal-Aircraft Collisions through Science-Based Management (T.L. DeVault, B.F. Blackwell, and J.L. Belant, editors). The Johns Hopkins University Press, Baltimore, Maryland, in association with The Wildlife Society, pp. 25-35.
  • [19] Airport Bureau of CAAC. 2009. Guide for investigation of bird situation and ecological environment of Civil Airports (AC-140-CA-2009-2).
  • [20] https://www.robinradar.com/bird-hazard-management-airports-guide/(2023).
  • [21] EUROCONTROL. 2003. Guidelines for Controller Training in the Handling of Unusual/Emergency Situations.
  • [22] Boeing. 2020. Flight Crew Training Manual.
  • [23] Boeing. 2020. Quick Reference Handbook.
  • [24] Gottschalk, T.K., F. Huettmann, and M. Ehlers. 2007. “Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: a review”. International Journal of Remote Sensing 26 (12): 2631-2656.
  • [25] Askren, J. Ryan, Brett E. Dorak, Heath M. Hagy, Michael P. Ward, Brian E. Washburn, and Michael Eichholze. 2018. Analysis of Canada Goose Movements in Relation to Midway International Airport Operations Using Satellite Telemetry. In Proceedings of the Midwest Fish and Wildlife Conference - Milwaukee.
  • [26] Brown, A. Brent, and Edwin E. Herricks. 2002. Developing a geographic information system to manage airport operations and reduce conflicts between wildlife and aircraft. Presented for the 2002 Federal Aviation Administration Technology Transfer Conference.
  • [27] Gray, Shelley. 2003. GIS and Wildlife Management Activities at Airports. In Proceedings of the 2003 Bird Strike Committee USA/Canada 5th Joint Annual Meeting, 18-21 August 2003, Toronto, Ontario, pp. 1-5.
  • [28] Li, Yafei, and Chen Liang, 2018, “The Analysis of Spatial Pattern and Hotspots of Aviation Accident and Ranking the Potential Risk Airports Based on GIS Platform”. Journal of Advanced Transportation 2018 : 4027498-1-12.
  • [29] Chen, W.S; Y.F. Huang, X.F. Lu, and J. Zhang. 2021. “Analysis of bird situation around airports using avian radar”. The Aeronautical Journal 125 :1294-1-20.
  • [30] Chen, W., Huang, Y., Lu, X. and Zhang, J. 2022. "Review on critical technology development of avian radar system". Aircraft Engineering and Aerospace Technology 94 (3) : 445-457.
  • [31] Gerringer, B. Michael, Steven L. Lima, and Travis L. DeVault. 2016. Evaluation of an Avian Radar System in a Midwestern Landscape. USDA National Wildlife Research Center - Staff Publications. 1773.
  • [32] Phillips, C. Adam, Siddhartha Majumdar, Brian E. Washburn, David Mayer, Ryan M. Swearingin, Edwin E. Herricks, Travis L. Guerrant, Scott F. Beckerman, Craig K. Pullins. 2018. “Efficacy of Avian Radar Systems for Tracking Birds on the Airfield of a Large International Airport”. Wildlife Society Bulletin 42 (3) : 467-477.
  • [33] Nilsson, Cecilia, Adriaan M. Dokter, Baptiste Schmid, Martina Scacco. Liesbeth Verlinden, Johan Bäckman, Günther Haase, Giacomo Dell'Omo, Jason W. Chapman, Hidde Leijnse, and Felix Liechti. 2018. “Field validation of radar systems for monitoring bird migration”. Journal of Applied Ecology 55 (6) : 2552-2564.
  • [34] Ren, Junsong, and Yi Wang. 2022. “Overview of Object Detection Algorithms Using Convolutional Neural Networks”. Journal of Computer and Communications 10 (1) : 115-132.
  • [35] Guo, Bin, Wenjia Du, Lan Cheng, Jing Cheng, and Lu Wang. 2020. “Application of artificial intelligence bird recognition technology in airport bird strike prevention safety management”. IOP Conference Series: Earth and Environmental Science 565 : 012092-1-4.
  • [36] Wu, Honggang, Zhi Cheng, Kaizhen Wei, Jianrui Ma, and Xiaojuan Li. 2022. Performance Evaluation of Bird Detection Radar in the Application of Airports. In Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering pp. 756-760.
  • [37] Muenzberg, Mario, A. Schilling, Harry Schlemmer, V. Vogel, C. Cramer, and J. Schlosshauer. 2011. “The infrared-based early warning system for bird strike prevention at Frankfurt airport”. Proceedings of the SPIE, 8012 : 80120C-1-7.
  • [38] Bhusal, Santosh, Manoj Karkee, Uddhav Bhattarai, Yaqoob Majeed, and Qin Zhand. 2022. “Automated execution of a pest bird deterrence system using a programmable unmanned aerial vehicle (UAV)”. Computers and Electronics in Agriculture 198 : 106972-1-10.
  • [39] Vas, Elisabeth, Amelie Lescroel, Olivier Duriez, Guillaume Boguszewski, and David Gremillet. 2015. “Approaching birds with drones: first experiments and ethical guidelines”. Biology Letters 11 : 20140754-1-4.
  • [40] Blackwell, F. Bradley, Travis L. DeVault, Thomas W. Seamans, Steven L. Lima, and Patrice Baumhardt. 2012. “Exploiting avian vision with aircraft lighting to reduce bird strikes”. Journal of Applied Ecology 49 : 758-766.
  • [41] Blackwell, F. Bradley, and Glen E. Bernhardt. 2010. “Efficacy of aircraft landing lights in stimulating avoidance behavior in birds”. Journal of Wildlife Management 68 : 725-732.
  • [42] Kalyandurg, Niranjan, Charan Ebsv, and Tirumala Rao Koka. 2016. Aircraft radar system for bird and bat strike avoidance. Patent US10520597B2.
  • [43] Surya, M., Namita L. Rao, Pratham Kumar D., Mr. Santosh Kumar B.R. 2020. “On-board aircraft ultrasonic bird repeller”, International Journal of Engineering Applied Sciences and Technology 5 (3) : 208-224.
  • [44] Field, Joris, E.J. Boland, Jeroen van Rooij, Frederik Mohrmann, J.M. Smelting. 2020. Startle Effect Management. Final Report EASA_REP_RESEA_2015_3.
  • [45] https://www.aphis.usda.gov/aphis/ourfocus/wildlifedamage/programs/nwrc/sa_spotlight/calculating+strike+risks+for+different+bird+species/(2023).
  • [46] Handa, Ankur, Richard A. Newcombe, Adrien Angeli, and Andrew J. Davidson. 2012. Real-Time Camera Tracking: When is High Frame- Rate Best?. In Proceedings of the 12th European Conference on Computer Vision - Volume Part VII, pp. 222-235.
  • [47] Dziri, Aziz Marc Duranton, and Roland Chapuis. 2016. “Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera”, Journal of Electronic Imaging 25 : 8-21.
  • [48] Xiao, Youzi, Zhiqiang Tian, Jiachen Yu, Yinshu Zhang, Shuai Liu, Shaoyi Du, and Xuguang Lan. 2020. „A review of object detection based on deep learning”. Multimedia Tools and Applications 79 : 23729-23791.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0b22d16-357f-4ed9-aeb1-c38187ed2f82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.