PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Admissible pair of spaces for non-correctly solvable linear differential equations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the differential equation −y′(x)+q(x)y(x)=f(x),x∈R, where f∈Lp (R), p∈[1,∞), and 0≤q∈Lloc1 (R), ∫0−∞q(t)dt=∫0q(t)dt=∞, q0(a)=infx∈Rx+ax−aq(t)dt=0 for any a∈(0,∞). Under these conditions, the above equation is not correctly solvable in Lp (R) for any p∈[1,∞). Let q(x) be the Otelbaev-type average of the function q(t), t∈R, at the point t=x; let θ(x) be a continuous positive function for x∈R, and Lp,θ (R)={f∈Llocp (R):∫ −∞|θ(x)f(x)|pdx<∞},∥f∥p,θ:=∥f∥Lp,θ(R) =(∫ −∞|θ(x)f(x)| pdx) 1/p. We show that if there exists a constant c∈[1,∞) such that the inequality c−1q(x)≤θ(x)≤cq(x) holds for all x∈R, then under some additional conditions for q the pair of spaces {Lp,θ (R);Lp (R)} is admissible for the considered equation.
Wydawca
Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
  • Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
autor
  • Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
  • Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
Bibliografia
  • 1 N. Chernyavskaya, Conditions for correct solvability of a simplest singular boundary value problem, Math. Nachr. 243 (2002), 1, 5–18.
  • 2 N. Chernyavskaya, L. Dorel and L. Shuster, Admissible pair of spaces for not correctly solvable linear differential equations, preprint 2014, http://arxiv.org/abs/1409.7823.
  • 3 N. Chernyavskaya and L. Shuster, Conditions for correct solvability of a simplest singular boundary value problem of general form, Z. Anal. Anwend. 25 (2006), 2, 205–235.
  • 4 N. Chernyavskaya and L. Shuster, Weight estimates for solutions of linear singular differential equations of the first order and the Everitt–Giertz problem, Differential Integral Equations 25 (2012), 5–6, 467–504.
  • 5 R. W. Cottle, Mathematical Programming. Essays in Honor of George B. Dantzig. Part II, Springer, Berlin, 1985.
  • 6 M. Lukachev and L. Shuster, On uniqueness of the solution of a linear differential equation without boundary conditions, Funct. Differ. Equ. 14 (2007), 2, 337–346.
  • 7 J. L. Massera and J. J. Schaffer, Linear Differential Equations and Function Spaces, Pure Appl. Math. 21, Academic Press, New York, 1966.
  • 8 K. T. Mynbaev and M. O. Otelbaev, Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988.
  • 9 M. Otelbaev, The smoothness of the solution of differential equations, Izv. Acad. Nauk Kazak. SSR 5 (1977), 45–48.
  • 10 E. C. Titchmarsh, The Theory of Functions, Oxford University Press, Oxford, 1939.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0b007f6-acf1-4255-9322-7338d5065565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.